
Consistency and Enforcement of Access Rules
in Cooperative Data Sharing Environment

Meixing Le∗, Krishna Kant, Sushil Jajodia

Center for Secure Information Systems, George Mason University, Fairfax, VA 22030

Abstract

In this paper we consider the situation where a set of enterprises need to collab-
orate to provide rich services to their clients. An enterprise may need informa-
tion from several other collaborating parties to satisfy its business requirements.
Such collaboration often requires controlled access to one another’s data, which
we assume is stored in standard relational form. We assume that a set of access
rules is given to the parties to regulate the data sharing, and such rules are
defined over the join operations over the relational data. It is expected that
the access rules will be designed according to business needs of the involved
enterprises and although some negotiation between them will be involved, only
a comprehensive analysis of the rules can uncover all issues of consistency be-
tween rules and their adequacy in answering the authorized queries (which we
call enforceability). In this paper, we provide such an analysis and provide algo-
rithms for checking and removing inconsistency, checking for rule enforceability,
and minimally updating the rules to ensure enforceability whenever possible
using only the existing parties. The involvement of specialized third parties for
consistency and enforcement purposes is not addressed in this paper.

Keywords: access rule consistency; cooperative data access; join path; rule
enforcement; consistent join group

1. Introduction

Providing rich services to clients with minimal manual intervention or paper
documents requires the enterprises involved in the service path to collaborate
and share data in an orderly manner. For instance, an e-commerce company
needs to obtain data from a shipping company to arrange for automated ship-
ping of merchandise and to enable automated status checking, and the shipping
company requires the order information from the e-commerce company. The
e-commerce company may have to further exchange data with warehouses and

∗Corresponding author
Email addresses: mlep@gmu.edu (Meixing Le), kkant@gmu.edu (Krishna Kant),

jajodia@gmu.edu (Sushil Jajodia)

Preprint submitted to Elsevier May 20, 2013

suppliers to get the information about the products. In such an environment,
information needs to be exchanged in a controlled way so that the desired busi-
ness requirements can be met but other private information is never leaked. For
example, a shipping company has all the information about its customers, how-
ever, only the information about the customers that deal with the e-commerce
company in question should be visible to the e-commerce company. The infor-
mation about the remaining customers should not be released to the e-commerce
company. In addition, the data from shipping company may include other in-
formation such as which employee is delivering the order, and such informa-
tion should not be released to the e-commerce company. Therefore, we need a
mechanism to define the data access privileges in the cooperative data access
environment.

We assume that each enterprise manages its own data and all data is stored
in a standard relational form such as BCNF. We use relational data since it is the
most used data form, but it is possible to extend the model to work with other
data forms by defining suitable models for data composition. The data access
privileges of the enterprises are regulated by a set of access rules. Each access
rule is defined either on the original tables belonging to an enterprise or over the
lossless joins of the data from several different parties. Using join operations,
an access rule only releases the matched information from the parties. For
instance, if the e-commerce company can only access the join result of its data
and the shipping company’s data, then only the tuples about the shipping orders
from the e-commerce company can be visible to the e-commerce company. In
addition, the attributes such as “delivery person” are never released to the e-
commerce company, so suitable projection operations are applied on the join
results in access rules to further restrict the access privileges. To allow working
at the schema level, the selection operation is not considered in this paper,
although it is possible to extend the results to simple selection predicates. In the
following, we expose and study various issues that arise in such an environment.

An enterprise typically needs data from several parties to provide services
and answer queries. A query is authorized only if there is an access rule providing
enough privileges. However, as the access rules are defined on the join results of
basic relations, a party can get information from several cooperative parties and
perform local computation to derive the result that is not authorized by any
rule. To give a simple example, if an enterprise P is authorized to get relations
E and S from the e-commerce and shipping companies respectively, then it can
obtain the result of E ./ S (over appropriate join attribute). If we say that there
is no rule authorizing P to access the join result of E ./ S, there is a conflict
among the access rules since E ./ S is intended to be denied but is accessible
to P .

In a complex environment, when the enterprises set up their rules, such
conflicts may not be obvious, and making them aware of the issue via the kind
of analysis presented in this paper is crucial for avoiding undesired leakage of
their data. A more important issue is one of resolving the conflict. This can be
done in two basic ways: (a) by explicitly addition of implicit privileges such as
E ./ S to the rules, or (b) by denying access to E ./ S if the enterprises conclude

2

that the implicit access was really not intended. In this paper we focus only
on (a) and rely on the enterprises to alter their rules suitably so that implicit
accesses are no longer objectionable. We recognize that this may not always
be possible. Individual implicit accesses can be denied by introducing trusted
third parties as proxies. For example, if party PE can operate on relation S
only via a third party, it can no longer compute the full E ./ S. (As usual,
some restrictions on how much data a query can retrieve is essential to ensure
that a querier does not retrieve the entire relation.) Due to space limitations, a
comprehensive treatment of third parties is outside the scope of this paper, and
is addressed in an upcoming paper [20].

Given a set of access rules, we propose an algorithm to generate additional
rules so as to remove all the conflicts. When a new rule is added, we need
to further consider the new conflicts caused by this rule. To achieve that,
the algorithm takes advantage of the functional dependencies among the basic
relations to add all needed rules. Although the worst case complexity of the
algorithm is exponential, the real world complexity is generally quite acceptable
due to fact that long chains of joins are rare in practice. In addition, the
evaluation can be done prior to running queries, so its complexity is not critical.

Since the business relationships among the cooperative parties may change
from time to time, the access rules also change correspondingly. We consider
two types of changes on the access rules: independent change and cooperative
change. The first type of change only affects the rules on a single party and
the latter one involves multiple parties. Since any changes on the access rules
may result in new conflicts, we also propose algorithms to remove conflicts in the
cases of a new access rule is granted or an existing rule is revoked. In both cases,
a single change can lead to a series of changes in order to ensure consistency. For
the cooperative access rule changes, we assume that the enterprises negotiate
and agree to the necessary changes in advance. This means that the actual
changes must be introduced simultaneously for all the parties. We propose a
mechanism to deal with the required synchronization in this case. The main
issue to address is to ensure that rule changes are introduced in such a way that
minimum number of queries is affected.

Even if the set of access rules is conflict free, there are still many hurdles
in properly implementing the access rules. Since the enterprises are allowed to
specify an arbitrary set of access rules, it is possible that there is no way to
derive a safe execution plan for queries allowed by certain rules. The simplest
way to illustrate this problem is by considering the following situation: a rule
specifies access to R ./ S (where R and S are relations owned by two different
parties); however, no party has access to both R and S and thus no party is
able to do the join operation! The rules are consistent, but R ./ S cannot be
implemented anywhere. Thus, a basic problem is to determine enforceability of
the given rules. If a rule is not enforceable, we should either remove it or make
it enforceable. If not, this will cause problems for the queries. For instance,
a query for the information of R ./ S is authorized by the specified rule, but
cannot be properly answered.

We address the rule enforcement checking problem in two steps. First of

3

all, we examine the enforceability of each access rule in a constructive bottom-
up manner, and build a relevance graph that captures the relationships among
the rules. In a collaborative environment, a rule can be enforced with not
only the locally available information but also the remote information from the
cooperative parties. If a rule is not totally enforceable, we consider two ways
to deal with it. The first option is to remove the unenforceable part of the
rule, so that only enforceable rules are retained. The second option is to modify
related existing rules to make the inspected rule totally enforceable. We use
the property of the graph to find the solution that has minimal impact on the
existing rules.

The outline of the paper is as follows. Section 2 addresses the issue of consis-
tency and enforcement of rules in a cooperative access environment. Section 3
describes an algorithm for rule consistency checking. Section 4 deals with the
problem of changes in the rules. Section 5 describes the mechanism to check
the rule enforceability. Section 6 discusses the algorithm modifying the rules
to achieve rule enforceability. Section 7 discusses the related work. Finally,
Section 8 concludes the discussion and lays out areas for future work.

2. Consistency of Access Rules and Rule Enforcement

In this section, we introduce basic concepts and the problems of access rule
consistency and enforcement.

2.1. Preliminaries

In this work, we consider a group of cooperating parties, each of which
maintains its data in a standard relational form such as Boyce-Codd Normal
Form (BCNF). It is possible to consider more complex normal forms as well,
but this is beyond the scope of this paper. We assume simple select-project-join
queries, i.e., no cyclic join schemas or queries. We assume that the join schema
is given – i.e., all the possible join attribute sets between any two relations are
known. Each join in the schema is lossless so that a join attribute is always
a key attribute of some relations. We study the problems only involving the
cooperating parties; no “helper” third parties are considered here.

Each cooperative party is given a set of access rules that are defined over
the join results of basic relations owned by these parties. We call a sequence
of joins as a join path. An access rule is further defined with the attribute set
authorized on a specified join path.

Definition 1. A join path is the result of a series of join operations over a
set of relations R1, R2...Rn with the specified equi-join predicates (Al1, Ar1),
(Al2, Ar2)...(Aln, Arn) among them, where (Ali, Ari) are the join attributes from
two relations. We use the notation Jt to indicate the join path of rule rt. We
use JRt to indicate the set of relations in a join path Jt. The length of a join
path is the cardinality of JRt.

4

An access rule rt is a triple [At, Jt, Pt], where Jt is called the join path of
the rule, At is the set of authorized attributes, and Pt is the party authorized
to access these attributes. (Note that projection over the authorized set of
attributes is implicit here, but the order of joins in an actual implementation
may be done according to performance considerations.) Each access rule defines
a new relation, and we can perform the relational operations such as join on
them as well. Correspondingly, an incoming query q can be represented as a
pair [Aq, Jq], which stands for the query attribute set and the query join path.
The defined access rules are known by all the cooperating parties, and any party
that has the sufficient permissions may answer the query. We also assume that
each rule has all the key attributes of the basic relations in its join path.

2.2. A running example

Our running example models an e-commerce scenario with five parties: (a)
E-commerce, denoted as E, is a company that sells products online, (b) Cus-
tomer Service, denoted C, is another entity that provides customer service func-
tions (potentially for more than one company), (c) Shipping, denoted S, provides
shipping services (again, potentially to multiple companies), (d) Supplier, de-
noted P , is the party that stores products in the warehouses, and finally (e)
Warehouse, denoted W , is the party that provides storage services. To keep
the example simple, we assume that each party has but one relation for its lo-
cal database described below. The attributes should be self-explanatory; the
key attributes are indicated by underlining. In each of these relations, a single
attribute happens to form the key, but this is not required in our analysis.

1. E-commerce (order id, product id, total) as E

2. Customer Service (order id, issue, assistant) as C

3. Shipping (order id, address, delivery type) as S

4. Warehouse (product id, supplier id, location) as W

5. Supplier (supplier id, supplier name, factory) as P

Below, we use oid to denote order id for short, pid stands for product id,
sid stands for supplier id, and delivery stands for delivery type. The possible
join schema is given in Figure 1. Relations E, C, S can join over their common
attribute oid; relation E can join with W over the attribute pid, and W can join
with P on sid. In the example, relations are in BCNF, and the only functional
dependency (FD) in each relation is the one implied by the key attribute (i.e.,
key attribute determines everything else).

We now define a set of access rules given to the party E as described in
Table 1. (Suitable rules must also be defined for other parties, but are not
shown here for brevity.) The first column of the table is the rule numbers, and
the second column shows the attribute sets of the rules. The third column lists
the join paths on which the rules are defined. The last column (redundant in
this example) indicates the party to which the rules are given.

5

C (oid, issue, assistant)

S (oid, address, delivery)

E (oid, pid, total)

W (pid, sid,
location)

oid

oid

oi
d

pi
d

P (sid, sname,
factory)

sid

Figure 1: The given join schema for the example

Rule No. Authorized attribute set Join Path Party
1 {oid, pid, total} E PE

2 {oid, issue, address} S ./oid C PE

3 {oid, pid, total, issue} E ./oid C PE

4 {oid, pid, sid, location, total} E ./pid W PE

5 {pid, sid, factory} W ./sid P PE

Table 1: access rules for e-commerce cooperative data access

2.3. Rule conflicts and consistency

There are two styles in which rules can be given. An implicit specification
means any valid compositions of the given rules are also considered as valid
rules. In contrast, an explicit specification lists out all the allowed accesses and
any access not included in the list is not allowed. Given our chosen method of
conflict resolution (i.e., by adding rules), the distinction between implicit and
explicitly specification is not significant, as we shall see shortly.

In general, it is possible that a party obtains two pieces of information; say
R and S according to two different explicit rules. It is then free to join these
locally and obtain R ./ S even if no rule authorizes access to this composition.
Such a situation creates a conflict since access to R ./ S is not allowed by the
rules but is still possible. We say the set of rules are inconsistent if an access
conflict exists with respect to any join path. As discussed before, we choose
to remove inconsistency by adding additional rules that allow for all potential
compositions that have not been explicitly specified in this paper. In most
cases, it is reasonable to allow the local computation results once the underlying
information is authorized. For this, one must generate all possible compositions
of the given rules and add any missing ones from the list. Therefore, whether we
start out with an implicit or explicit specification, the result will be the same.
We now define the notion of closure to make the rules consistent.

Definition 2. If two rules ri, rj of party P can be joined losslessly according
to the given join schema, and the resulting information [Ai

⋃
Aj , Ji ./ Jj] is

also authorized by another rule rk of party P , then we say the two rules are
“upwards closed”. For a set of rules, if any two rules that can be joined
losslessly are “upwards closed”, we say the set of rules is consistent, and the
rules form a consistent closure.

As access rules are usually defined by the parties based on their business
needs, the given set of rules is usually inconsistent. Therefore, it is desired

6

to have a mechanism to add the necessary rules so as to make the rule set
a consistent closure. Although we are discussing the problem in a coopera-
tive environment, the rule consistency property applies to each individual party
separately. Thus, the mechanism for achieving consistent closure below only
involves rules on one party.

2.4. Key attributes hierarchy

Since the join paths are the results of lossless join operations, the key at-
tributes of basic relations in the given join schema form a hierarchal relationship.
For instance, suppose that the relations R and S have their key attributes R.K
and S.K respectively. If these relations can join losslessly, then the joining at-
tribute must be the key attribute in at least one of them [2]. That is, either the
join is performed on R.K, S.K, or R.K is the same attribute as S.K. In either
case, one key attribute from a basic relation is also the key attribute of the
join result of the two relations. If the join is performed over the attribute S.K
(R.K 6= S.K), then the attribute R.K can functionally determine the relation
S. In such case, we say R.K is at a higher level than S.K, denoted R.K → S.K.
If R.K = S.K, there is no hierarchy, and such key attribute of R and S is also
the key attribute of the join result. For a given valid join path, the key attribute
of the join path is always a key attribute from a basic relation. We call the key
attribute of the join path in an access rule as key of the rule. Also, the join
attributes in the join paths are always key attributes of some basic relations
and these join attributes form the hierarchal relationship. For instance, in the
given example rules, the key attribute oid is at the top level, and we have the
hierarchal relationship for three key attributes, where oid → pid → sid. For
each key attribute of basic relation, we create a group for the rules that take
this attribute as their key attribute. Since the rules within this group share the
same key attribute, any two of them can join over their key attributes.

Definition 3. A join group is a group of access rules associated with a key
(join) attribute, where all the attributes in these rules functionally depend on
this attribute. If a join group is consistent, then it is called a consistent join
group.

Since some rules can be the result of local computation over other rules, there
also exist relationships among the rules. In fact, the relationships are based on
the join paths of the rules as they present the possibilities of join operations.
Given a rule rt with join path Jt, we call a join path as a sub-join path of Jt
if it is a join path that contains a proper subset of relations of JRt. We say a
rule defined on a sub-join path of Jt is a relevant rule to rt. A rule rt can
be locally generated only by combining the information from its relevant rules,
otherwise, the generated rule contains extra information from relations not in
Jt. Based on the relevance relationship, the rules are organized in a relevance
graph. Each node in such structure is a rule marked by its join path. Rules in
such structure are put into different levels, and the level is determined by the
length of its join path. Two nodes are connected if one is the relevant rule of

7

the other. For instance, Figure 2 shows a relevance graph. J2 is a sub-path of
J6, and r2 is a relevant rule to r6. They are connected in the graph, and they
are on different levels as J2 has length 2 and J6 has length 3.

2.5. Query authorization and rule enforcement

When a query is given, it should be answered by one of the parties that
have the authorization. Since our authorization model is based on attributes,
any attribute appearing in the Selection predicate in an SQL query is treated
as a Projection attribute. In other words, the authorization of a PSJ(Project,
Select, Join) query is transformed into an equivalent Projection-Join query form.
Therefore, a query q can be represented by a pair [Aq, Jq], where Aq is the set of
attributes appearing in the Selection and Projection predicates, and the query
join path Jq is the FROM clause of an SQL query. For instance, there is an
SQL query Q1:

“Select oid, total, address From E Join S On E.oid = S.oid Where delivery =

‘ground’”

The query can be represented as the pair [Aq, Jq], where Aq is the set
{oid, total, address, delivery}; Jq is the join path E ./oid S.

Access rules define the set of queries that are authorized to retrieve informa-
tion from the parties. A query q is called authorized if there exists a rule rt
such that Jt ∼= Jq and Aq ⊆ At. The join paths must be equivalent. Otherwise,
the relation/view defined by the rule will have fewer or more tuples than the
query asks for. Here we don’t consider the situation where the projections on
two different join paths get the same result (e.g., by joining on foreign keys) since
data coming from different parties usually does not have foreign key constrains.

In fact, “authorized” is only a necessary condition for a query to be an-
swered but not sufficient. To perform the required join operations to answer
the query, we need to find appropriate parties that have the sufficient privileges
to do these joins. Therefore, at least one legitimate query execution plan is
required to answer a given query. A query execution plan or “query plan”
for short, includes several ordered steps of operations over authorized and ob-
tainable information and provides the composed results to a party. The result
of a query plan pl is also relational, and it can also be presented with the triple
[Apl, Jpl, Ppl]. A valid query plan should be authorized by a given access rule
rt. A query plan pl answers a query q, if Jpl ∼= Jq ∼= Jt, Aq = Apl ⊆ At and
Ppl = Pt. An access rule defines the maximal set of attributes that a query on
the equivalent join path can retrieve. Thus, each rule can also be treated as a
query. We call the query plan to enforce a rule as an enforcement plan or
“plan” for short below.

Definition 4. A rule rt can be totally enforced, if there exists a plan pl such
that Jt ∼= Jpl, At = Apl, Pt = Ppl. rt is partially enforceable, if it is not totally
enforceable and there is a plan pl that Jt ∼= Jpl, At ⊃ Apl, Pt = Ppl. Otherwise,
rt is not enforceable. A join path Jt is enforceable if there is a plan pl that
Jt ∼= Jpl.

8

At the very beginning, only the rules indicating the data owners have their
own data are known to be totally enforceable. As a plan contains steps bringing
information together to enforce a rule, an enforcement plan can have following
3 operations over the enforceable information: A projection (π) is performed
on a single party to select attributes; A join (./) operation is also performed
at a single party, and it combines two pieces of information and generates in-
formation on a longer join path; Data transmission (→) is an operation that
happens between two parties, and one party sends information to the other. It
is required that the two parties have two rules on the equivalent join paths and
the information transmitted is based on such join path. In addition, the rule on
the receiving party should have an attribute set that contains all the attributes
of the information being transmitted. Otherwise, the transmission is not safe.

It is obvious that not all the rules are enforceable. Whether an enforcement
plan exists depends on whether pieces of enforceable information on shorter join
paths are available and whether they can be joined losslessly at some places.
In cooperative environment, the enforceable information on remote cooperative
parties may also be helpful to construct an enforcement plan. We will discuss
the mechanism to check rule enforcement in later sections.

3. Consistency Checking Algorithm

To resolve the access rule inconsistency, we propose a rule consistency check-
ing algorithm. Given a set of rules, the goal of the algorithm is to generate the
consistent closure of it. Our algorithm uses the join attribute hierarchy prop-
erty and join groups to efficiently generate the consistent closure. The rules are
first divided into different join groups and consistent join groups are generated.
Next, based on the join attribute hierarchy, each join attribute is considered for
deriving further rules, and any such rules are added to the rule closure. When
this procedure terminates, we have the entire consistent closure.

3.1. Consistent join group generation

The first step is to generate the consistent join group. With the input as a
join group of some given rules, the algorithm considers each derived rule in the
order of join path length. When counting the join path length for a group, we
only include the basic relations whose key attributes are the attribute associated
with the join group, and we call these relations as dependent relations of the
group. A join path that involves only dependent relations is called a dependent
join path. Relations whose key attributes are not equal to this attribute are
called optional relations. Optional relations or join paths are associated with
the dependent join paths. In relevance graph, we only assign one node for each
dependent join path. If the given rule set includes two or more rules that have
the same dependent join path, they are assigned to the same node in the graph
but identified with their optional relations. When generating the consistent
join group on the higher level parent nodes of this node, the algorithm needs to
generate corresponding rules using each of the rule associated with this node.
We will use our running example to illustrate this.

9

oid, issue, pid,
total, address

E S C r6

oid, issue,
pid, total

E C r3 oid, issue,
address S C r2

oid, pid, total
E r1

(E W) r4

(C E W) r7

(S C E W) r8

sid,
location

Figure 2: The consistent join group of oid

The join paths discussed below to generate the consistent join group are all
dependent join paths. The algorithm looks for each join path length to check if
a pair of rules can be joined to form a join path of desired length. Starting from
the length of 2, the algorithm takes rules with length less than 2 and generates
all the pairs of them. If the resulting rule is not present in the given join group,
the algorithm adds it to the group. Otherwise, the resulting rule is merged
with the existing rule on their attribute sets. Meanwhile, the relevance graph
is also built and edges are added between the resulting rule and the rules being
examined. Next, the algorithm checks join path length of 3 to k where k is the
number of dependent relations in the join group. When inspecting the length of
i join-path, the algorithm first takes the rule rm with maximal length (m < i)
in the current join group. The algorithm then looks for possible pairs including
rm, so the other rule rj whose dependent join path should have the property
that |JRj \ JRm|+ |JRm| = i. The matching rules are being considered in the
reverse order of join path length since the rule with longer join path includes all
the attributes from its lower level relevant rules. All the rules with join paths
that do not satisfy this property will not be considered in pair with rm, and a
rule is never paired with its own relevant rules. By iterating over all the join
path lengths, the consistent join group can be generated.

To illustrate the process, we use the running example. The first 4 rules have
the same key attribute oid, and they are put into the same join group of oid.
Within these rules, r4 has an optional relation W which does not depend on
oid. It is only counted as join path of length 1 and is associated with the node
of r1 since its dependent join path is the same as J1. Then the algorithm begins
with join path length of 2. As the only rule with join path length less than 2 is
r1, no pair is found. However, the given rules r2 and r3 are both of length 2,
so they are checked with r1 to see the relevance relationship. After the check,
r3 is connected with r1 in the graph. Next, the algorithm checks the length of
3. Since this join group only includes 3 different relations {E,C, S}, this is the
maximal length to check. The algorithm first takes r2 and looks for the rule
can pair with it. Between the join path J1 and J3, J3 is selected since its length
is longer, and there is no need to further check with J1 as it is relevant to J3.
Therefore, a rule r6 with join path E ./ C ./ S is added to the join group with

10

the attribute set A2

⋃
A3. In the relevance graph, this rule is connected with

both r2 and r3.
In addition, rule r4 has the optional relation W , and it is associated with

r1 in the group. Therefore, all the rules that r1 is relevant to also have this
optional relation. In such case, based on r6 and r3, another two rules are added
into the join group. This makes join group consistent, and it is listed in Table 2.
Here the first 4 rules are given and rule 6 to 8 are added by the algorithm to
make the join group consistent. The built relevance graph is shown in Figure 2.
In the figure, the rule numbers are indicated beside the rule join paths, and the
dashed box shows the optional relation of W . Since r4 has the optional relation
E and overlaps with r1 on dependent join path, all the parent rules of r1 which
are r3, r6 should also have corresponding rules including the optional relation
W , which are the rules r7, r8.

Rule No. Authorized attribute set Join Path Party
1 {oid, pid, total} E PE

2 {oid, issue, address} S ./oid C PE

3 {oid, pid, total, issue} E ./oid C PE

4 {oid, pid, sid, location, total} E ./pid W PE

6 {oid, pid, total, issue, address} E ./oid S ./oid C PE

7 {oid, pid, total, issue, location, sid} C ./oid E ./pid W PE

8 {oid, pid, total, issue, location, sid,
address}

S ./oid C ./oid E ./pid
W

PE

Table 2: Generated consistent join group of oid

3.2. Iteration of key attributes

Based on the previous step, we take advantage of the key attributes hierarchy
property to achieve the rule consistent closure. Since the key attribute hierarchy
can be obtained based on the given join schema, we assume this information is
available when the algorithm is being executed. At the beginning, the algorithm
makes an empty set called target rule set, and it keeps adding rules into this
set. At the end, the target rule set is the rule closure we need. For the given
set of rules, the algorithm first puts each rule into different join groups based
on its key attribute, and it will only be assigned into one join group. Then, for
each join group, the algorithm generates the consistent join group respectively
using the mechanism discussed above.

Next, the algorithm iterates each join group according to the level of its
associated attribute in the key attribute hierarchy. To begin with, the algorithm
inspects the join group of the top level attribute. All the rules in the group being
inspected are put into the target rule set first. Then, the algorithm checks the
lower level groups one by one. For each join group being checked, all the rules
in the current target rule set are iterated. If the rule rt from the current target
rule set contains the join attribute that is associated with the join group being
checked, then each rule in the join group being checked can join with rt. The
algorithm generates all these rules by making the union of join paths and the

11

oid, issue, pid,
total, address

E S C r6

oid, issue,
pid, total

E C r3

oid, issue,
address

S C r2

oid, pid, total E r1

pid, sid,
factory

W P r5

oid, pid, sid,
total, location

E W r4

oid, issue, pid,
total, sid, location

C E W r7

oid, pid, sid,
total, factory

E W P r9

oid, issue, pid,
total, sid, factory

C E W P r10

oid, issue, pid, location
total, sid, address

S C E W r8

oid, issue, pid, location
total, sid, address, factory

S C E W P r11

Figure 3: The relevance graph for the consistent closure.

attribute sets, and it adds these generated rules into the target rule set. If there
is already a rule in the target rule set with the same join path, the generated
rule is merged with the existing rule by making union of the attribute sets from
the rules. As the algorithm iterates all the join groups, the target rule set
will keep grow and eventually form the consistent closure. At the time when
rules are added to the target rule set, the algorithm also updates the relevance
graph capturing the rule relevance relationships. If a new rule is generated, it
is appended to the graph. The detail algorithm is described in Algorithm 1.

We use the running example to illustrate the process of join group iteration.
According to the key attribute hierarchy, oid is the top level attribute. Thus,
the consistent join group of oid which is listed in Table 2 is copied to the target
rule set. The only remaining join group is the group of pid since there is no given
rule takes sid as key attribute. There is only one rule r5 in the join group of pid,
so this join group is already consistent. In the key attribute hierarchy, pid is on
the next level of oid, the algorithm checks each rule in the current target rule
set to see if it contains the attribute pid. The set of rules {r1, r3, r4, r6, r7, r8}
all have this attribute, so 6 rules joining with r5 are generated and added to
the target rule set. However, some of these rules have the same join paths and
they are merged with existing rules, so only 3 new rules are added to the target
rule set. Finally, we generate the consistent closure as listed in Table 3. The
last three rules are generated in this process. Figure 3 shows the built relevance
graph, where relevant rules are connected by edges. The attribute sets of the
rules are shown in boxes and the join paths together with rule numbers are
shown above. The rules are put into 5 levels based on their join path length.

12

Rule No. Authorized attribute set Join Path Party
1 {oid, pid, total} E PE

2 {oid, issue, address} S ./oid C PE

3 {oid, pid, total, issue} E ./oid C PE

4 {oid, pid, sid, location, total} E ./pid W PE

5 {pid, sid, factory} W ./sid P PE

6 {oid, pid, total, issue, address} E ./oid S ./oid C PE

7 {oid, pid, total, issue, location, sid} E ./oid C ./pid W PE

8 {oid, pid, total, issue, location, sid,
address}

S ./oid C ./oid E ./pid
W

PE

9 {oid, pid, sid, factory, total} E ./pid W ./sid P PE

10 {oid, pid, total, issue, sid, factory} C ./oid E ./pid
W ./sid P

PE

11 {oid, pid, total, issue, location, sid,
factory, address}

C ./oid S ./oid E ./pid
W ./sid P

PE

Table 3: Generated consistent closure based on given rule set

3.3. Average case complexity

The complexity of the algorithm depends on the given join schema and
given rules. In worst case, generating a consistent join group takes exponential
time. However, in real cases, usually a join group will not include more than
4 dependent relations. We make the assumption that the maximal number of
dependent relations in a join group is 4. In addition, we assume there are at
most k given rules in a join group. Within a join group, there are some given
rules overlap on their dependent join paths. Assuming the number of overlapped
rules is p, there are k − p nodes for initially given rules. As the largest number
of different relations is 4, we have k − p < 16. Usually, k and p are small, and
the number of rules in a consistent join group is less than 20 in most cases so
that the complexity of generating it is low. We can consider the generation of
consistent join groups takes constant time and there are at most C rules in a
consistent join group.

If there are m join groups in total, it looks like we have the complexity of
Cm in worst case. However, within a join group, there is only one dependent
relation that can join with the rules in the next join group to be inspected. If
at most v rules (v < C) including such dependent relation, then at most v ∗ C
rules will be added at each iteration, and the complexity is O(v ∗ C ∗ (m− 1)).
In many cases, a join group contains only one or no rule such as the join group
of pid and sid in the example, so C is fairly small for many join groups. Also,
the length of a valid join path m is usually very small as a join of 5 relations
from different enterprises should be a rare case. Therefore, the complexity of
the algorithm in real scenario is much lower than the theoretical worst case one.

Theorem 1. Given a rule set, the algorithm generates its consistent closure.

proof. Assuming there are two randomly chosen rules ri, rj , we check whether
the consistent closure generated by the algorithm always have rk, which is the
join result of them. ri, rj can be given rules or the rules generated by the

13

Algorithm 1 Rule Closure Generation Algorithm
Require: Given access rule set R on one party
Ensure: The set of rules R+ that is a consistent closure
1: Put rules from R into join groups based on their key
2: Put the key attributes of relations into a priority queue Q based on its level in hierarchy
3: for Each join group G do
4: Generate the consistent join group G+

5: for Length k ← 2 to 4 do
6: Mark all rules unvisited
7: for Each unvisited rule ri length < k do
8: if Exists rm, where |Jj − Ji|+ |Ji| = k then
9: Join ri with rm and get result rj

10: if There is no rule in R+ of join path Jj then
11: R+ ← rj
12: else
13: Get the rule and merge with rj
14: R+ ← updated rj
15: Mark its relevant rules visited
16: while Q 6= ∅ do
17: Dequeue the key attribute, and get its associated G+

18: if R+ 6= ∅ then
19: for Each rule rr in R+ do
20: if rr includes the key attribute of G+ then
21: for Each rule rg in G+ do
22: Join rr with rg and get result rj
23: if There is no rule in R+ of join path Jj then
24: R+ ← rj
25: else
26: Get the rule and merge with rj
27: R+ ← updated rj
28: R+ ←

⋃
G+

algorithm. If ri, rj have the same key attribute, the two rules are in the same
join group. When the algorithm generates the consistent join group, it tries
all possible combinations of the dependent relations and optional relations are
considered from bottom up, so rk is always included in the generated consistent
join group.

If ri and rj are not in the same join group, then we assume the key attribute
of ri is on the higher level than the key of rj . If ri includes the key attribute of
rj , when the algorithm iterates the join group of rj , ri is already in the target
rule set, and their join result rk is put into the target rule set. Therefore, all
the rules are upwards closed, and the generated rule set is consistent. �

4. Consistent Access Rule Changes

Cooperative parties may change the access rules over time because of the
evolving business needs. The change could either be grant more access privileges
to a party or revoke some existing privileges. However, the change may cause
new conflicts among the rules. A mechanism is needed to maintain the rule
consistency while access rules are changed.

14

4.1. Access rule change

In general, a change of access rule that meet the new business requirement
and also has minimal impact on the remaining access rules is the optimal solu-
tion. There are different factors can be take into consideration to best recover
the rule consistency in the case of change. For instance, according to the busi-
ness relationships, some access rules maybe more important than the others,
so they may have different priorities. In such case, we always prefer to make
changes on the less important rules first. Also, in a cooperative environment,
some parties collaborate more intimately than the others, and there may also
have priorities on different parties. Thus, it is preferred to grant privileges to
the intimate parties and revoke privileges from the others. To keep the discus-
sion simple, we propose our mechanism to find the solution that takes minimal
changes to the existing access rules in terms of the number rules being modified.
The priorities in access rules and parties can be considered by extending such a
mechanism, and we leave them for future works.

A possible architecture for the authorization is that the access rules are
stored at a central place different from any cooperative parties. An independent
query optimizer then read the access rules and generates the query plans. In
some cases, cooperative enterprises do not typically share a single independent
query optimizer. Then, each party that answers the queries has to generate the
query plan locally. Without a centralized party, each cooperative party should
keep a copy of all access rules locally. We discuss rule changes under centralized
model below, and the problem under de-centralized model can be solved by
taking care of the synchronization issues among the cooperative parties.

4.2. Consistently grant more information

When more access privileges are granted to a party, we need a mechanism to
maintain the rule consistency. There are two types of grants. The first is adding
non-key (non-join) attributes to a rule. If a rule is granted with more attributes,
then the algorithm examines the higher level relevant rules of the rule in the
graph. We search upwards in the graph, and this can be done with a depth first
search. If the rule being inspected does not have these expanded attributes,
then the algorithm adds these attributes to the rule. If the rule being inspected
already has these attributes, the search along this path will stop and another
path will be picked. Consequently, the added attributes will be propagated to
all the related rules that are at a higher level from the rule being changed. For
instance, in our running example, if the attribute delivery is added to r2, then
the rules r6, r8, r11 on the same path need to add this attribute.

In some cases, the attribute added is not the key attribute of the rule being
modified, but the attribute is the key attribute for other rules. By adding this
attribute, the modified rule can possibly further join with other rules. To deal
with this situation, once a join attribute is added to a rule (non-key attribute
for the rule being modified), the algorithm checks if there exists a join group
associated with this attribute. If that is the case, rules which use this attribute
as the key attribute are selected from the generated consistent closure. Each

15

rule selected is then joined with the rule being modified, and the resulting rule
is added to the rule set or merged with existing rule. Only these rules need to
be added to the rule set to maintain rule consistency.

In addition to that, there is another type of change, where a rule with a new
join path is granted to a party. In such case, we need to check if this rule can
join with existing rules to generate new rules. The mechanism is similar to the
previous approach for generating the consistent closure. As the newly added
rule rn has a new join path, we first obtain the key attribute of rn, and then
rn is put into the join group whose associated attribute is the key attribute of
rn. Within this group, as a new rule is added, the algorithm recomputes the
consistent join group. This can be done efficiently since these rules all can join
over their key attributes. In fact, the rule rn is checked with existing rules in
the consistent join group. rn is inserted into the graph of the join group, and its
relevant rules and the rules it relevant to are not checked with it. All the other
rules are checked and rn can join with each of them to form a new rule and put
into the consistent join group. The algorithm then keeps the set of newly added
rules for the following rule generation.

In the next step, each of the newly added rules is iterated to see what are the
other rules that can be generated based on it. For each newly added rule ri, the
algorithm checks the join attributes in its join path (excluding its key attribute),
and for each join attribute the algorithm combines ri with the rules in the join
group and add them into the newly added rule set. This process actually finds
all needed rules which has the same key attribute as the key of rn. After that,
the algorithm looks for existing rules that include the key attribute of rn but
not using it as their key attributes. Each such rule can join with the newly
added rules in the group of rn over the key attribute of rn. The algorithm adds
all these generated rules into the rule set so as to complete it as a consistent
closure. The attribute set of the rules should also be considered. If there exists
a rule on the same join path, the attribute sets of the two rules are merged.

In our running example, we can think a new rule r12 with join path E ./oid S
is added whose attribute set is {oid, pid, total, address}. In this case, the algo-
rithm will put the rule into the join group of oid. In the relevance graph, such
a rule has relevant rule r1, and it is the relevant rule of r6, r8. Therefore, other
rules in the join group are paired with r12. However, most of these generated
rules already exist in the current join group, so the only new rule r13 need to be
added is on the join path of S ./oid E ./pid W . Next, the algorithm checks the
rules r12, r13. Since both of them include pid as non-key attribute, and there is
no join group of sid, both rules are paired with the join group of pid. This results
in only one additional rule r14 on the join path of S ./oid E ./pid W ./sid P .
Since oid is the top level join attribute, by adding this rule to the rule set, the
consistent rule closure is achieved. Table 4 lists these newly added rules.

In worst case, if there are already n rules exist in the closure, and there are C
rules in the join group. Adding one more rule will need adding additional C− 1
rules to maintain the consistency. For the above mechanism, the recompilation
of the join group will take C steps since each existing rule need to be checked.
The remaining complexity depends on the join groups associated with the added

16

Rule No. Authorized attribute set Join Path Party
12 {oid, pid, total, address} E ./oid S PE

13 {oid, pid, total, address, sid, loca-
tion}

S ./oid E ./pid W PE

14 {oid, pid, total, address, sid, location,
factory}

S ./oid E ./pid
W ./sid P

PE

Table 4: Access rules added together with a rule grant change

rules. If the total number of levels is u, and assuming at most s rules in a join
group has the join attribute of the inspected group, then the number of pairs to
examine in for one join group is s∗C. The total complexity can be O(C ∗u∗ s).

4.3. Revocation of existing access rules

Besides grant of more access privileges, the changes on the rules can also be
the revocation of some existing access rules. Similar to the grant case, the revo-
cation can range from removing some non-key attributes to complete removal of
a rule. We first discuss the situation where non-key attributes are revoked. The
revocation of attributes usually causes inconsistency. Since its relevant rules
may still have the revoked attribute, the party can still access these attributes
through local computation. Therefore, we need to also revoke these attributes
from all relevant rules. Based on the built relevance graph, the algorithm re-
trieves the relevant rules of the rule being modified, if any relevant rules include
such revoked attributes, these attributes are also revoked from these rules.

For instance, we can take the example of Figure 3. Let’s assume the modi-
fication is made on the rule r10, and the attribute factory is revoked. In such
case, its relevant rules r9, r5, r4, r1 are checked. Attribute factory should also
be revoked from these rules. Therefore, r9, r5 are modified to keep the rule
closure consistent.

If a rule with a join path is completely revoked from the rule set, we need to
make sure that such a join path can no longer be generated from the remaining
relevant rules. Therefore, each possible ways to enforce the join path need
to be obtained and the possible pairs should be taken apart. To achieve that,
only the direct relevant rules of the revoked rule rv in the relevance graph are
examined. The direct relevant rules of rv are the relevant ones in the graph that
directly connected to rv with one edge. For each of the direct relevant rule rd,
the algorithm computes its matching join path Jm for Jv. The matching join
path Jm is a join path that Jm ./ Jd = Jv, Jm 6= Jv, and |Jm| is the minimal one
among such join paths. Given the join schema, Jm can be efficiently determined
by computing the minimal set of JRm = JRv − JRd. If such set does not form
a join path that is a sub-path of Jm, then the matching join path of rd does not
exist. Otherwise, the matching join path Jm is obtained. In the graph, if a rule
containing Jm is not found, higher level rules connecting to it are examined,
and the one with minimal join path length is selected as Jm.

As we can check the enforceability of the rules which will be discussed in
later sections, we assume we already know what are the locally enforceable

17

rules. For each pair of rules being selected, the algorithm needs to remove one
rule from it so as to make the join path no longer enforceable. If a rule in the
pair is not locally enforceable, we prefer to remove it since it does not cause
cascade revocations. In contrast, if a rule in the pair is locally enforceable, by
removing this rule, we need to make sure all the rules that can compose this one
are taken apart. Thus, a cascade of revocation will occur. In addition, when
iterating each pair, the algorithm also records the number of appearances of
the rules. We prefer to remove the rule with most appearances since removing
one such rule can break most pairs. In worst case, half of the existing rules
need to be removed from the rule set. For instance, in Figure 3, the rule r10 is
completely removed. This rule has three direct relevant rules {r4, r9, r3}. r9 is
first examined, and its matching join path is {C}. As {C} is not available, r3
is paired with r9. In addition, r3 can pair with r5, r9, and r4 cannot pair with
any other rule. Therefore, the algorithm needs to break all the pairs of rules
{(r3, r5), (r3, r9)}. Since r3 appears in both pairs, the algorithm will revoke it
as well. Since r3 is not locally enforceable, we do not need further revocation.
Finally, revoking r10 with r3 will keep the rule closure consistent.

The above mechanism to remove a rule is complicated and it considers only
one next level of rules. Thus, we also propose removing the rules in another way.
Usually, a revocation is issued by a single party, and this party may revoke the
access rules with its own data from a certain party. When a revocation is issued,
it is reasonable for the party to revoke all the rules including its information.
In such a case, the revocation involves a set of rules that all including the
same basic relation, and the consistent closure is still maintained. Following
this idea, if we want to remove a rule, we can remove a set of rules containing
the same basic relation. The algorithm can first obtain all the relevant rules
of rv. For relevant rules, the algorithm records the numbers of appearances of
the basic relations in the join paths. The basic relation associated with least
number of rules is then selected, and rules including this basic relation are all
removed from the set. Using our example, suppose that we want to revoke rule
r10. This mechanism first retrieves its relevant rules which are {r4, r5, r9, r3, r1}.
Then the appearances of 4 basic relations are checked and counted. Relation
C appears once, E appears 4 times, W appears 3 times, and P appears twice.
Thus, the algorithm tries to remove the rules whose join path has C. Thus, r3 is
removed, and this result is the same as the previous algorithm for this example.
In general, these two mechanisms produce different results.

We argue that the rule closure property is different from the rule enforcement
issue. Though removing a set of rules will affect the enforceability of other rules,
we only focus on maintaining the rule consistency property here. For the second
approach, the complexity is O(n ∗ t), where n is the number of relevant rules,
and t is the maximal number of relations in a join path.

5. Checking Rule Enforcement

As discussed before, even though the rules are consistent, we still need a
mechanism to check if each individual rule can be enforced among the existing

18

parties. In this section, we first introduce some results, and then we present the
algorithm that checks the enforceability of each given access rules. To enforce
an access rule, a query plan is required, and we call a plan as joinable plan
if it contains all the key attributes of the basic relations in its join path. In
some cases, a rule does not have a total enforcement plan, but only some partial
plans. A partial plan only enforces a rule with an attribute set that is a subset of
the rule attribute set. We say that an attribute set is a maximal enforceable
attribute set for a rule, if it is enforced by a plan of the rule, and there is
no other plan of the same rule that can enforce a superset of these attributes.
If a rule is totally enforceable, its maximal enforceable attribute set is the rule
attribute set. Each rule has only one maximal enforceable attribute set.

Lemma 1. A rule has only one maximal enforceable attribute set.

proof. A rule defined on basic relation has one maximal enforceable attribute
set. To get the maximal attribute set of a rule, we do not eliminate any at-
tributes via projections and data transmission in the enforcement plans. If a
rule is not totally enforceable, it can have several partial plans. These plans
are on the same join path so they can be merged into one via join operations.
Thus, a partially enforceable rule has one maximal enforceable attribute set. If
a rule is not enforceable, it has empty enforceable attribute set. �

5.1. A new set of example access rules

When discussion the consistency problem, we check the rules on each party
individually. In contrast, the enforcement of a rule may require the collaboration
between the parties by exchanging authorized information. Hence, we give a new
set of access rules as the example to illustrate the enforcement checking process.
The set of rules are listed in Table 5, and given rules are already consistent.
The join schema is the same as the one used in previous example.

5.2. Enforcement checking mechanism

In this section, we describe the rule enforcement checking mechanism, and
it can tell which rules can be enforced and what are their maximal enforceable
attribute sets. That also gives the answer of what are the set of authorized
queries that can be safely answered. We have two options with the given rules
that are not enforceable. The first choice is that we keep only the found en-
forceable rules with their maximal enforceable attribute sets, and rules that are
not enforceable as well as the unenforceable attributes are removed from the
rule definitions. In other words, the algorithm finds all the information that
can be safely retrieved according to the given set of rules, and all inaccurate
and unenforceable definitions are removed. This solution can be thought as a
conservative one since it prohibits some authorized information to be released
because of the enforceability. In contrast, we can also modify the rule config-
urations in an aggressive way. In such scenario, we think all the information
regulated by the rules is authorized, and authorized information should be re-
trievable. Whenever any information in the defined rules cannot be enforced,

19

Rule No. Authorized attribute set Join Path Party
1 {pid, location} W PW

2 {oid, pid} E PW

3 {oid, pid, location} E ./pid W PW

4 {oid, pid, total} E PE

5 {oid, pid, total, issue} E ./oid C PE

6 {oid, pid, total, issue, address} S ./oid E ./oid C PE

7 {oid, pid, location, total, address} S ./oid E ./pid W PE

8 {oid, pid, issue, assistant, total, ad-
dress, delivery}

S ./oid E ./oid C ./pid W PE

9 {oid, address, delivery} S PS

10 {oid, pid, total} E PS

11 {oid, pid, total, address, delivery} E ./oid S PS

12 {oid, pid, total, location} E ./pid W PS

13 {oid, location, pid, total, address, de-
livery}

S ./oid E ./pid W PS

14 {oid, pid} E PC

15 {oid, issue, assistant} C PC

16 {oid, pid, issue, assistant} E ./oid C PC

17 {oid, pid, issue, assistant, total, ad-
dress, location}

S ./oid C ./oid E ./pid W PC

Table 5: Access rules for e-commerce cooperative data access

we change the rule configurations by granting more privileges so as to make this
information enforceable. Since there are different ways to modify the rules, we
prefer to find the way that has minimum impact on the existing rules. That is,
we try to find the minimum amount of information to release.

To that end, we first propose a constructive mechanism that checks the rules
in a bottom-up manner. In general, an enforcement plan for a rule combines
pieces of information available and generates the information authorized by the
rule. For each rule, the mechanism checks its relevant information locally and
remotely and indicates if it can be enforced and what is its maximal enforceable
attribute set. The set of unenforceable attributes and the unenforceable rules
are removed from the rule set. Since this algorithm works as the first option
we discussed above, we also provide the algorithm for the second option. If the
inspected rule cannot be totally enforced, we modify rules to make it enforceable.
We discuss the possible ways to define what is the minimal impact on the current
set of rules. We present the first algorithm below, and then we describe the
second algorithm. In fact, the second algorithm just introduces extra steps into
the first one when inspecting a given rule, and all the other steps are the same.
Therefore, we discuss only these additional steps for the second algorithm.

5.3. Finding enforceable information

When examining a rule [At, Jt, Pt], we call such a rule rt as Target Rule, the
attribute set At as Target Set, the join path Jt as Target Join Path, and the
party Pt in the rule as Target Party. All the other parties are Remote Parties.
To check the enforceability of rt, we first find the relevant information that

20

can be obtained locally at Pt. If this is not enough, we check the information
from remote parties. To enforce a rule with a long join path, we always need
to retrieve information from relevant rules with short join paths. Thus, the
algorithm works in the order of join path length, and it begins with rules on
basic relations (length of 1 rules). As the mechanism works bottom-up, when
examining a target rule with join path of length n, we can assume that all the
rules on join paths with shorter lengths have already been examined, and only
the maximal enforceable attribute sets of the rules are preserved.

Since the first task is to identify relevant information locally, we check the
rules relevant to rt at Pt. At party Pt, a joinable plan that is on a sub-join path
of Jt is a Relevant Plan. Parties that have rules defined on the equivalent join
path of Jt are called Jt-cooperative parties, and information on Jt is allowed
to be exchanged only among these parties by data transmission operations. For
instance, PE and PS are J13-cooperative parties since J13 ∼= J7. We assume that
each inspected rule is represented by an enforcement plan. When inspecting the
target rule, we consider using these plans to enforce it. We say “join among
rules” below, which means their enforcement plans.

The rule with join path length of 1 can be totally enforced by sending the
data from owners to the authorized parties. From then on, the algorithm checks
for rules defined on longer join paths. At the same time examining the rules,
the algorithm also builds a relevance graph similar to the one discussed in the
previous algorithm. Each node in such structure is a rule with its maximal
enforceable attribute set. The only difference is nodes belong to different parties
can be connected if they have the equivalent join paths. Figure 4 shows the
built structure for our running example. The different parties are separated
vertically. The bold boxes show the basic relations owned by different parties.
The algorithm starts the iteration with the rules on basic relations r1, r2, r4, r10,
and so on. As the algorithm iteratively checks all the rules, when a target rule rt
is examined, the algorithm first checks whether the join path Jt can be enforced
using relevant rules on Pt. After that, all the rules with equivalent join path of Jt
are checked respectively at Jt-cooperative parties. Then the algorithm checks
the possible enforcement by exchanging information among these parties. In
Figure 4, on the level of join path length 2, the algorithm checks the rules with
the order of r3, r12, r5, r16, r11 because J3 ∼= J12 and J5 ∼= J16. Jt-cooperative
parties such as PW and PS on J3 will check the remote enforcement between r3
and r12, which will be described later.

To check local enforceability, the algorithm finds its local relevant rules in
the currently built relevance graph since all its relevant rules have already been
examined and added to the graph. It only checks with the top level relevant
rules in the current graph, where top level rules are the nodes not connected to
any higher level nodes (rules with longer join paths) in the currently built graph
during the bottom-up procedure. In Figure 4, when the algorithm examines r13
on PS , only r11, r12 are top level rules. And when checking r8, r7 and r5 are top
level rules since r6 is not enforceable. Here, we take advantage of the upwards
closed property of the rules, so that the top level rules cover all possible join
results among the lower level rules. If these top level rules cannot be composed

21

to enforce the Jt, there is no need to check lower level rules. When examining
r13, there is no need to consider the join between r9 and r10. Among the rules in
the graph on Pt, a relevant rule rr of rt can be efficiently decided, if JRr ⊂ JRt.

The following step is to check whether the join path Jt can be enforced
locally by performing joins among these top level relevant rules. The algorithm
basically checks each pair of these rules. We check it pairwise because if a pair
of them can join, the result must be able to enforce Jt. Otherwise, there must
exist another relevant rule of rt authorizing the join result, and such a rule is
on higher level of the pair of rules being inspected, which is contradict to the
fact that the pair of rules are top level rules. When checking whether a pair
of rules (rs, rr) can join, the algorithm first tests their relation sets to see if
JRs

⋂
JRr = ∅. If these two join paths have overlapped relations, they can

join over the key attribute of the overlap part, and Jt can always be enforced.
Otherwise, we need to further check the attributes of two rules to see if they
have the required join attribute in common. If Jt can be locally enforced, we
mark the target rule as local enforceable rule and add it to the graph by
connecting it with top level relevant rules. Otherwise, it has to wait and see
if Jt can be enforced on other parties. For instance, when checking r3 in our
example, it has top level relevant rules r1 and r2, since there is no overlapped
relation for the pair of rules, the algorithm checks whether join attribute pid
can be found in both rules. On the other hand, when checking the pair r11 and
r12, as E is the overlapped relation, the join path J13 can be locally enforced.
r17 does not has a valid join pair, and it is not locally enforceable. Once a pair
is found to enforce the join path, the algorithm proceeds to next steps.

Meanwhile, the algorithm also computes the union of the attributes from top
level relevant rules regardless of the enforceability of Jt. The resulting attribute
set Ar includes all attributes that can be obtained from party Pt if Jt can be
enforced. It is always the case that Ar ⊆ At as rules are upwards closed. If Ar

not equals to At, we call the set of attributes At \Ar as missing attribute set
Am. The attributes in Am are potentially obtainable from the Jt-cooperative
parties. In the example, the attribute delivery in r8 cannot be found in its top
level rules r7 and r5, and it is a missing attribute after the local checking.

Next, the algorithm checks the remote information that a party can use to
enforce a rule, and only Jt-cooperative parties are checked. As the previous steps
of the algorithm tell which parties can locally enforce the join path Jt, if there
exists any party that can enforce Jt, then all the Jt-cooperative parties can have
joinable plans for their rules on Jt. Thus, the party Pt is able to get attributes
from all its Jt-cooperative parties to enforce rt. For instance, r17 is not locally
enforceable, but J8 can be enforced with a joinable plan at PE . Thus, we can
add a data transmission operation to such plan, and r17 also has a joinable plan.
This plan can join with r16, so that attributes issue, assistant in r17 can be
enforced. Consequently, these attributes in r8 can also be enforced. Therefore,
we take the union of the attribute sets from all Jt-cooperative parties to check
if rt can be totally enforced. If the missing attribute set Am ⊂ Ar1

⋃
Ar2 ...Ark

(where Ari is the relevant attribute set of a Jt-cooperative party Pi), then rt
can be totally enforced. Otherwise, Am is updated by removing the attributes

22

Algorithm 2 Rule Enforcement Checking Algorithm

Require: All given access rule set R on all parties
Ensure: Find enforceable rules and build graph

1: Mark rules with length 1 as total enforceable rules
2: Get the maximal length of join path length N
3: for Join path of length 2 to N do
4: for Each join path Jt length equal to i do
5: AJt ← ∅, the set of shared attributes on Jt
6: for Each party Pt has a rule rt on Jt do
7: Obtain the set of top level relevant rules Rv

8: Add the node and connections to Rv in graph
9: Av ← the union of attributes in Rv

10: Missing attribute set Am ← At

11: for Each pair of relevant rule (rs, rr) do
12: if The pair can locally enforce Jt then
13: Am ← Am \Av and break
14: if Am 6= ∅ then
15: Put rt with Am into the Queue of Jt
16: AJt ← AJt

⋃
Av

17: for Each rule rt in the Queue of Jt do
18: if Jt can be enforced on some party then
19: Add connections among Jt-cooperative parties in graph
20: Am ← Am \AJt
21: if Am 6= ∅ then
22: Replace At with At \Am in graph
23: else
24: rt cannot be enforced, remove rules on Jt from graph
25: Join path length i++

appear in any Ari . In such case, rt has a maximal enforceable attribute set
on Jt without the attributes in Am. The node rt in the relevance graph is
presented with the attribute set At \ Am. Meanwhile, connection edges are
added among the Jt-cooperative rules in the relevance graph. For example,
attribute delivery of r8 also cannot be found in its Jt-cooperative party PC ,
so it cannot be enforced. r8 in the graph is represented with the attribute set
without delivery. We use bold font in Figure 4 to indicate this attribute is not
enforceable. Also, since join path J6 cannot be enforced at any party, r6 is not
enforceable, and it will not be included in the relevance graph. In Figure 4,
we use the dashed box to show r6 is removed. The local enforceable rules are
marked with “L”. The detailed algorithm is described in Algorithm 2.

In algorithm 2, each rule will be examined at most twice, with one local
enforceability check and another one in checking the queue of Jt. In the step
of local enforcement checking, only the top level relevant rules on party Pt are
checked. Suppose that the total number of rules is Nt, the maximal number
of relevant rules of a rule is No, and checking join condition takes constant C.
Then the worst case complexity for algorithm 2 is O(Nt ∗ N2

o ∗ C), where No

is usually small. In addition, this algorithm can be used as a pre-compute step
once all the rules are given.

Theorem 2. The Rule Enforcement Checking Algorithm finds all en-
forceable information.

23

oid, issue, pid, location total,
assistant, address,delivery

S �C �E �W

oid, pid,location
total, address, delivery

S �E �W

oid,pid,total
address,
delivery

E �S
oid, pid, issue,

assistant

C �E

oid,issue,
assistant

E
oid, pid,

total

E

oid, pid, total

E

oid, pid

S
oid, address,

delivery

E

oid, pid

C

PE PS
PCPw

oid, pid, location
total, address

S �E �W

W

pid, location

oid, pid, issue, assistant,
total, address, location

C �S �E �W

oid,
pid,total
location

E �W
oid, pid
location

E �W
oid, pid,

total,issue

E �C

oid,pid,issue,
total, address

S �E �C

LL L

L

L

r1 r2

r3

r4

r5

r6 r7

r8

r9 r10

r11
r12

r13

r14

r16

r15

r17

Figure 4: relevance graph built for the example

proof. As all the information on the join results comes from the basic relations,
the algorithm works in bottom-up manner to capture the operation results. If
the join path of a rule cannot be enforced, then rules on this join path cannot be
enforced. The algorithm first finds a way to enforce the join path of the rule rt,
and it explores all possible ways to compose useful information on Pt. Since the
only other information can be used to enforce rt must come from Jt-cooperative
parties, the algorithm also considers all the attributes that rt can get from them.
There is no other way to enforce more attributes for rt. �

6. Augmenting Authorizations for Enforceability

In this section, we discuss the mechanism that modifies the rule definitions
by granting more privileges to enforce the unenforceable rules. We can add
such steps into the previous algorithm after concluding that the inspected rule
cannot be totally enforced. Such a rule could be either partially enforceable
or its join path is not enforceable at all. In the former case, according to
Lemma 1, the missing attributes are all non-key attributes in the underlining
basic relations. Therefore, there is no need to add new rules, and expanding
the attribute sets of existing rules can make the rule totally enforceable. For
the latter case, new rules must be added to make the join path enforceable.
The problem of deciding new rules to add is extremely complex for a number
of reasons. First, an addition could violate the consistency of the rules, and
we need to maintain the rule consistency using the aforementioned algorithms.
Second, an automated addition of a rule may be undesirable, and we may need
to look for some manually assisted or guided process. Third, it would desire to
define some notion of minimality in adding new rules that is nontrivial. In view
of these challenges, we reserve this case for future work.

Thus, our goal is to grant more attributes to existing rules so as to turn
partially enforceable rules into totally enforceable rules while maintaining min-

24

imal impact on the existing rules. Here we define the impact as the amount of
new information granted to the parties, which can be measured in two slightly
different ways as explained below.

We first consider the minimal impact in terms of the number of attributes
being added to the different rules. Referring to the graph we built, we can turn
the problem of minimal attribute addition into a shortest path problem with
path length measured by the number of edges. We do it for each attribute Mi

in the missing attribute set respectively. A shortest path from the target rule
rt to a rule with missing attributes Mi gives the minimal number of rules. For
this, we perform a breadth first search starting from rt where each visited node
records its parent node. Once a rule has Mi is found, the breadth first search
stops and the path between the two nodes is selected. For each node on the
selected path, the attribute Mi is added to the corresponding rule.

Since the goal is to make the attribute Mi enforceable in rt, the algorithm
only checks the rules on the sub-paths of Jt and include the relation that Mi

comes from. When rt is inspected, it is at the top level of the graph, so the
search is performed top-down. Each next visited node must have the join path
length no longer than the current node. It is because that a plan has longer
join path cannot be used in a plan for a shorter join path by valid operations,
and the information of Mi cannot be transmitted from a higher level node to
a lower one. All these selection conditions make the search more efficient than
the general case. For instance, since rule r8 has missing attribute delivery, the
search begins from r8. The search gives the shortest path r8, r7, r13, and r8
becomes totally enforceable by adding delivery to r7.

However, because of the upwards closed property of the rules, once Mi is
released to a party on a rule with shortest join path, all the rules that this rule
is relevant to should also have Mi added to them. Since rules with longer join
paths have not been examined by Algorithm 2 yet, it is difficult to know the
exact number of attributes that will ultimately be added. That is, the above
algorithm ensures minimality only in terms of initial addition, not the ultimate
one. It has the worst case complexity the same as breadth first search which is
related to the number of nodes and edges.

From another point of view, we can consider that once an attribute is granted
to a party, this party will have the privilege to access such attribute. There-
fore, no matter how many rules on this party are expanded with this attribute,
we only count them as one attribute release. In this sense, our algorithm does
accomplish its stated goal. The detailed algorithm is described in Algorithm 3.
Different from the previous algorithm which stops when a rule having the at-
tribute Mi is found, we do the breadth first search for all the qualified rules.
Whenever a new rule rn is visited, the algorithm checks if the party Pn has been
visited before. If this is the first time Pn being visited, the algorithm records
the rule rn associated with the party Pn indicating a shortest path from Pn

to Pt is found. After the breath first search, the parties that have the asso-
ciated rules are examined. For each found shortest path from Pn to Pt, the
algorithm counts the number of different parties along such path. At last, the
path with the minimal number of parties will be selected as the best way to

25

Algorithm 3 Rule Enforcement Algorithm with Minimal Parties

Require: A partially enforceable rule rt with missing attribute set Am

Ensure: rt is totally enforced with modified rules R′

1: Get the relevance graph G up to rt
2: for Each Mi in Am do
3: Create a queue Q
4: Enqueue rt onto Q
5: while Q is not empty do
6: ri ← Q.dequeue()
7: if ri has attribute Mi then
8: if Pi is unvisited then
9: Mark Pi visited, record with ri

10: for Each edge e that includes ri do
11: rn ← e.opposite(ri)
12: if rn is unvisited && Jn is a sub-path of Jt &&

JRn ≤ JRi && Jn includes the relation of Mi then
13: Mark rn visited, record ri as its parent
14: Enqueue rn onto Q
15: for Each visited party Pi except Pt do
16: Get ri associated with Pi

17: Count the number of parties on path from ri to rt
18: Keep the minimal party Pm

19: Get rm associated with Pm

20: while rm 6= rt do
21: rm ← parent(rm)
22: Add Mi to rm

modify the rules, and rules on this path are expanded with the attribute Mi.
All these modified rules are recorded. Similar to the previous discussion, when
Algorithm 2 examines rules on longer join paths, if a modified rule is relevant
to the rule being inspected, such a rule is also modified so as to include the
missing attributes into its attribute set. The algorithm has the complexity of
O((|E|+|V |)∗|Am|), where |E| is the number of the edges and |V | is the number
of nodes in the relevant subgraph, and |Am| is the number of missing attributes.

In the example, r8 has the missing attribute delivery. After the breadth first
search, only party PS is visited, and the associated rule is r13. Following the
path from r13 to r8, only r7 needs to be updated with the attribute delivery.

7. Related Work

The problem of controlled data release among distributed collaborating par-
ties has been studied in [11]. The authors propose an efficient and expressive
form of authorization rules defined on the join path of relations. They devise
an algorithm to check if a query with given query plan tree can be authorized
using the explicit authorization rules. It assumes all the given rules are already
upwards closed. However, this is not the case in reality since access rules are
usually formulated without consideration of consistency. Therefore, maintaining
the consistency of the set of given rules is a crucial problem, that we address in
this work. In another work [10], the same authors evaluate whether the infor-
mation release the query entails is allowed by all the authorization rules given to

26

a particular user, which considers the possible combination of rules and assume
the rules are defined in an implicit way. Their solution uses a graph model to
find all the possible compositions of the given rules, and checks the query against
all the generated authorization rules. In our work, we assume authorizations are
explicitly given. Data release is prohibited if there is no explicit authorization.

Processing distributed queries under protection requirements has been stud-
ied in [6, 13, 21]. In these works, data access is constrained by limited access
pattern called binding patterns, and the goal is to identify the classes of queries
that a given set of access patterns can support. These works only consider two
subjects, the owner of the data and a single user accessing it, whereas the au-
thorization model considered in our work involves independent parties that may
cooperate in the execution of a query. There are also classical works on query
processing in centralized and distributed systems [4, 17, 9, 25], but they do not
deal with constraints from the data owners.

There are some works on the access control in collaborative environments.
In [26], the authors examined existing access control models as applied to col-
laboration, and point the weaknesses of these models. In addition, [15, 23]
applied RBAC in the collaborative environments. [8] discussed the access con-
trol problems in the popular social networks. [12] proposed a web services based
mechanism for access control in collaboration situations. All these access con-
trol models are different from the one we are using. In [22], collaboration among
enterprises was also studied, but that work focused on different application data
and multilevel policies. The given access rules are also similar to the firewall
rules, which indicates what types of queries can go through. As firewall rules are
needed to be enforceable and accurate [3, 27], we have the same requirements
in our situation.

Our authorization model is similar to the view based authorization, and it
is related to the area of answering queries using views [16, 14, 24]. These tech-
niques are useful for query optimization, data integration and so on. Although
the given view definitions in these works is similar constraints to our access
rules, they consider the queries and views in the form of conjunctive queries
and they do not consider the collaboration relationships among different par-
ties. These make our problem different from these works, and we may inves-
tigate our problem with conjunctive authorization model in the future. There
are several services such as Sovereign joins [1] to enforce the access rule model
we used, such a service gets encrypted relations from the participating data
providers, and sends the encrypted results to the recipients. Join processing in
outsourced databases is also discussed in [28, 7]. These methods are useful to
enforce our access rules, but we discuss the problem without any involvement
of third parties.

This paper is primarily based on our work on the rule consistency problem
that was presented at the CollaborateCom conference [18], and we integrated
it with additional materials on rule enforcement issues which were presented at
the SafeConfig Symposium [19] (no proceedings).

27

8. Conclusions and Future Works

As more and more enterprises work cooperatively to perform computations,
securely providing access to cooperative data is important. We use an authoriza-
tion model for cooperative data access based on the join results of the relational
data. However, in the cooperative environment, access conflicts may arise among
the rules made according to business requirements. In this paper, we proposed
a mechanism to make the set of cooperative access rules consistent, and we
also presented algorithms to maintain the rule consistency in the case of grant-
ing and revocation of access privileges. Since access rules are made based on
business requirements, it is possible that some rules cannot be enforced among
the cooperative parties. Therefore, we also proposed an algorithm to check
the enforceability of the given rules among cooperative parties as well as the
mechanisms to make rules totally enforceable by modifying the rule definitions.

In the future, we will look for mechanisms that maintain the rule consistency
by removing some of the rules instead of simply adding rules. The Chinese
wall policy [5] and access via third parties provides two ways of enforcing this.
Moreover, we will further look into the more dynamic situation where not only
the rules are changed from time to time, but also parties can join and leave
the cooperative environment at different times. For the rule enforcement issue,
we will study the problem where a trusted third party is available. In such a
scenario, the problems of how to enforce the rules without modifications and
what are the optimal ways to enforce such rules need to be investigated. We
will also study how to efficiently handle select operations in our theoretical
development and algorithms.

References

[1] R. Agrawal, D. Asonov, M. Kantarcioglu, and Y. Li. Sovereign joins. In Proceedings of
the 22nd International Conference on Data Engineering, (ICDE’06), 2006.

[2] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in relational databases. ACM
Transactions on Database Systems, 4(3):297–314, Sept. 1979.

[3] E. Al-Shaer, A. El-Atawy, and T. Samak. Automated pseudo-live testing of firewall con-
figuration enforcement. IEEE Journal on Selected Areas in Communications, 27(3):302–
314, 2009.

[4] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr. Query pro-
cessing in a system for distributed databases (SDD-1). ACM Transactions on Database
Systems, 6(4):602–625, Dec. 1981.

[5] D. F. C. Brewer and M. J. Nash. The chinese wall security policy. In IEEE Symposium
on Security and Privacy, pages 206–214, 1989.

[6] A. Cal̀ı and D. Martinenghi. Querying data under access limitations. In Proceedings of
the 24th International Conference on Data Engineering, ICDE 2008, April 7-12, 2008,
Cancun, Mexico, pages 50–59, 2008.

[7] B. Carbunar and R. Sion. Toward private joins on outsourced data. IEEE Transactions
of Knowledge and Data Engineering(TKDE), 24(9):1699–1710, 2012.

28

[8] B. Carminati and E. Ferrari. Collaborative access control in on-line social networks. In
Proceedings of 7th International Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom), 2011, pages 231 –240, oct. 2011.

[9] S. Chaudhuri. An overview of query optimization in relational systems. In Proceedings
of the seventeenth ACM symposium on Principles of database systems(PODS’98), pages
34–43, 1998.

[10] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.
Assessing query privileges via safe and efficient permission composition. In Proceedings
of the 15th ACM conference on Computer and communications security(CCS ’08), pages
311–322, 2008.

[11] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati.
Controlled information sharing in collaborative distributed query processing. In Pro-
ceedings of the 28th IEEE International Conference on Distributed Computing Systems
(ICDCS’08), Beijing, China, June 2008.

[12] A. El Kalam, Y. Deswarte, A. Baina, and M. Kaaniche. Access control for collabora-
tive systems: A web services based approach. In Proceedings of IEEE International
Conference on Web Services(ICWS’07), pages 1064 –1071, july 2007.

[13] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query optimization in the presence
of limited access patterns. In Proceedings of the 1999 ACM SIGMOD international
conference on Management of data, pages 41–60, 1999.

[14] J. Goldstein and P.-A. Larson. Optimizing queries using materialized views: a practical,
scalable solution. In Proceedings of the 2001 ACM SIGMOD international conference
on Management of data(SIGMOD’01), pages 331–342, 2001.

[15] A. Gouglidis and I. Mavridis. domRBAC: An access control model for modern collabo-
rative systems. Journal of Computers and Security, 31(4):540–556, 2012.

[16] A. Y. Halevy. Answering queries using views: A survey. The VLDB Journal, 10(4):270–
294, 2001.

[17] D. Kossmann. The state of the art in distributed query processing. ACM Computer
Survery, 32(4):422–469, 2000.

[18] M. Le, K. Kant, and S. Jajodia. Access rule consistency in cooperative data access
environment. In 8th IEEE International Conference on Collaborative Computing: Net-
working, Applications and Worksharing, 2012.

[19] M. Le, K. Kant, and S. Jajodia. Rule configuration checking in secure cooperative data
access. In 5th Symposium on Configuration Analytics and Automation (SafeConfig),
2012.

[20] M. Le, K. Kant, and S. Jajodia. Rule enforcement with third parties in secure cooperative
data access. In 27th IFIP WG 11.3 Working Conference on Data and Applications
Security and Privacy (DBSec), 2013.

[21] C. Li. Computing complete answers to queries in the presence of limited access patterns.
The VLDB Journal, 12(3):211–227, Oct. 2003.

[22] E. Y. Li, T. C. Du, and J. W. Wong. Access control in collaborative commerce. Decision
Support Systems, 43(2):675–685, 2007.

[23] J. S. Park and J. Hwang. Role-based access control for collaborative enterprise in peer-to-
peer computing environments. In Proceedings of the eighth ACM symposium on Access
control models and technologies(SACMAT ’03), pages 93–99, 2003.

29

[24] R. Pottinger and A. Y. Halevy. Minicon: A scalable algorithm for answering queries
using views. The VLDB Journal, 10(2-3):182–198, 2001.

[25] S. H. Roosta. Optimizing distributed query processing. In Proceedings of the Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’05), pages 869–875, Las Vegas, Nevada, USA, June 2005.

[26] Tolone, Ahn, Pai, and Hong. Access control in collaborative systems. CSURV: Computing
Surveys, 37, 2005.

[27] A. Wool. A quantitative study of firewall configuration errors. IEEE Computer, 37(6):62–
67, 2004.

[28] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis. Authenticated join processing
in outsourced databases. In Proceedings of the ACM Conference on the Management of
Data (SIGMOD’09), 2009.

30

