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Abstract—In this paper we consider the situation where a set
of enterprises need to collaborate to provide rich services to
their clients. Such collaboration often requires controlled access
to each other’s data, which we assume is stored in standard
relational form. The access control is provided by a set of access
rules that may be defined over the joins of various relations. In
this paper we introduce the notion of consistency of access rules
and devise an algorithm to ensure consistency. We also consider
the possibility of occasional changes in policy and address the
problem of maintaining consistency in the face of such changes.
Since the policy changes may occur while queries are actively
being processed, we address the issues of synchronization and
changes to query planning to accommodate online policy changes.

I. INTRODUCTION

Providing rich services to clients with minimal manual inter-
vention or paper documents requires the enterprises involved
in the service path to collaborate and share data in an orderly
manner. For instance, an automated determination of patient
coverage and costs requires that a hospital and insurance
company be able to make certain queries against each others’
databases. Similarly, to arrange for automated shipping of
merchandise and to enable automated status checking, the e-
commerce vendor and shipping company should be able to
exchange relevant information, perhaps in form of database
queries. In such environments, data must be released only
in a controlled way among cooperative parties, subject to
the authorization policies established by them. In this paper,
we expose and study various issues that arise in such a
collaboration.

In general, enterprise data may appear in a variety of
forms, including the simplistic key-value forms like Google’s
BigTable. However, for concreteness, we assume that all data
is stored in relational form, with all tables in a standard normal
form. In such a model, data access privileges are given by
a set of access rules, each of which is defined either on
original tables belonging to an enterprise or over the lossless
joins of two or more of these. The join operations, coupled
with appropriate projection and selection operations define the
access restrictions; although in order to enable working with
only the schemas, we do not consider selection operation.

A query is authorized only if there is a given access rule
providing enough privileges. However, as the access rules are
defined on the join results of basic relations, a party can get
information from several cooperative parties and perform local
computation to obtain the result that is not authorized by any

rule. To give a simple example, if an enterprise P is authorized
to get relations R and S from Pr and Pg respectively, then it
can obtain the result of RS (R and S can have a lossless
join). As the access rules are made according to business
requirements among the cooperative parties, it is possible
that there is no rule authorizing P to access that join result.
Consequently, there is a conflict among the access rules. To
avoid such conflict, one solution is to add an additional rule
to allow P accessing the join result. The alternative is to
constrain the party so that it cannot access both R and S
at the same time.

In this work, we explore the first approach, and remove the
conflicts among the rules by adding more access rules. Given
a set of access rules made according to business requirements,
we propose an algorithm to generate the needed rules so as to
remove all the conflicts among the rules. When a new rule is
added, we need to further consider the new conflicts caused
by this rule. To achieve that, the algorithm takes advantage
of the functional dependencies among the basic relations to
add all needed rules. Although the worst case complexity
of the algorithm is exponential, the real world complexity is
generally quite acceptable particularly due to fact that it is rare
to have long chains of joins in practice. In addition, such a
process can be done as pre-computation so that complexity is
not critical.

Since the business relationships among the cooperative
parties may change from time to time, the access rules also
change correspondingly. We consider two types of changes on
the access rules: independent change and cooperative change,
where the first type of change only affects the rules on one
single party and the latter one involves multiple parties. Since
any changes on the access rules may invoke new conflicts, we
also propose algorithms to remove conflicts in the cases of
a new access rule is granted or an existing rule is revoked.
In both cases, a single change can lead to a series changes
in order ensure consistency. For the cooperative access rule
changes, we assume that the enterprises negotiate and agree
to the necessary changes in advance. This means that the
actual changes must be introduced simultaneously for all the
parties. We propose a mechanism to deal with the required
synchronization in this case.

In addition to ensuring consistency of rules under change,
we also need to address the issue of implementing changes
to rules while the system is executing queries. The issues to
address are to ensure that rule changes are introduced in such a
way that minimum number of queries are affected. We devise



mechanisms for both individual and coordinated changes to
rules in this case.

The outline of the paper is as follows. Section II addresses
the issue of consistency of rules in a cooperative access envi-
ronment and Section III describes an algorithm for consistency
checking. Section IV deals with the problem of changes in
the rules. Section V addresses the issue of query planning and
execution under access rule changes. Section VI discusses the
related work. Finally, Section VII concludes the discussion and
lays out areas for future work.

II. CONSISTENCY OF ACCESS RULES
A. preliminaries

We consider a group of cooperating parties, each of which
maintains its data in a standard relational form such as such as
Boyce-Codd Normal Form (BCNF). It is possible to consider
more complex normal forms as well, but is beyond the
scope of this paper. We also assume simple select-project-
join queries, i.e., no cyclic join schemas or queries. The query
may be answered by any of the parties that has the required
permissions. We assume that the join schema is given — i.e.,
all the possible join attribute sets between any two relations
are known. Each join in the schema is lossless so that a join
attribute is always a key attribute of some relations. We also
assume that the rules are composeable, which means each
rule has all the key attributes of the basic relations in its join
path. We study the problems only involving the cooperating
enterprises; no “helper” third parties are considered here.

Each cooperative party is given a set of access rules that
are defined over the join results of basic relations owned by
these parties. We call a sequence of joins as a join path. An
access rule is further defined with the attribute set authorized
on a specified join path.

Definition 1: A join path is the result of a series of join
operations over a set of relations Ri, Rs...R, with the spec-
ified equi-join predicates (Aj1, A1), (A2, Ar2)...(Amn, Arn)
among them, where (A;;, A,;) are the join attributes from two
relations. We use the notation J; to indicate the join path of
rule ;. We use J R, to indicate the set of relations in a join
path J;. The length of a join path is the cardinality of JR;.

An access rule r; is a triple [A;, J;, P;], where J; is called
the join path of the rule, A; is the set of authorized attributes,
and P, is the party authorized to access these attributes.
(Note that projection over the authorized set of attributes
is implicit here but may be done according to performance
considerations.) Each access rule defines a new relation, and
we can perform the relational operations such as join on them
as well. Correspondingly, a query ¢ can be represented as a
pair [A,, J,], and any party has the authorized rule can answer
the query.

B. An running example

Our running example models an e-commerce scenario with
five parties: (a) E-commerce, denoted as F, is a company
that sells products online, (b) Customer_Service, denoted C,
is another entity that provides customer service functions
(potentially for more than one company), (c) Shipping, denoted

S, provides shipping services (again, potentially to multiple
companies), (d) Supplier, denoted P, is the party that stores
products in the warehouses, and finally (e) Warehouse, denoted
W, is the party that provides storage services. To keep the
example simple, we assume that each party has but one
relation for its local database described below. The attributes
should be self-explanatory; the key attributes are indicated by
underlining them. In each of these relations, a single attribute
happens to form the key, but this is not required in our analysis.

1) E-commerce (order_id, product_id, total) as E

2) Customer_Service (order_id, issue, assistant) as C

3) Shipping (order id, address, delivery_type) as S

4) Warehouse (product_id, supplier_id, location) as W

5) Supplier (supplier_id, supplier_name, factory) as P

In the following, we use oid to denote order_id for short,
pid stands for product_id, sid stands for supplier_id, and
delivery stands for delivery_type. The possible join schema
is also given in figure 1. Relations E, C, S can join over their
common attribute oid; relation E can join with W over the
attribute pid, and W can join with P on sid. In the example,
relations are in BCNF, and the only functional dependency
(FD) in each relation is the one implied by the key attribute
(i.e., key attribute determines everything else).

C (oid, issue, assistant) oid E (oid, pid, total)
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Fig. 1.

We now define a set of access rules given to the party £
as described in Table 1. (Suitable rules must also be defined
for other parties, but are not shown here for brevity.) The first
column of the table is the rule numbers, and the second column
shows the attribute sets of the rules. The third column lists
the join paths on which the rules are defined. The last column
(redundant in this example) indicates the party to which the
rules are given.

Rule No. | Authorized attribute set Join Path Party
1 {oid, pid, total} 19 Pg
2 {oid, issue, address} S Mpig C Pg
3 {oid, pid, total, issue} E g9 C Pg
4 {oid, pid, sid, location, total } E<pq W Pg
5 {pid, sid, factory} W g4q P Pg

TABLE I
ACCESS RULES FOR E-COMMERCE COOPERATIVE DATA ACCESS

C. Rule conflicts and consistency

There are two styles in which rules can be given. An
implicit specification means any valid compositions of the
given rules are also considered as valid rules. In contrast,
an explicit specification lists out all the allowed accesses and
any access not included in the list is not allowed. Given our
chosen method of conflict resolution (i.e., by adding rules),
the distinction between implicit and explicitly specification is
not significant, as we shall see shortly.



For a query ¢ to be authorized by explicit rules, there must
be an access rule r; whose join path J; is equivalent to J; and
A, is a superset of A,. In general, it is possible that a party
obtains two pieces of information, say R and S according to
two different explicit rules. It is then free to join these locally
and obtain R 0 S even if no rule authorizes access to this
composition. Such a situation creates a conflict since access to
R > S is not allowed by the rules but is still possible. We say
the set of rules are inconsistent if an access conflict exists with
respect to any join path. As stated earlier, the inconsistency
can be removed in one of two ways: (a) By adding additional
rules that allow for all potential compositions that have not
been explicitly specified, or (b) by actually denying access to
R > S. The latter can be done via the well-known Chinese
Wall policy [3] whereby the party can either access R or S but
not both simultaneously (and hence cannot compute R < .S).

In this paper we adopt solution (a). To do so, one must
generate all possible compositions of the given rules and add
any missing ones from the list. In this case whether we start
out with an implicit or explicit specification, the result will be
the same. We now define the notion of closure to make the
rules consistent.

Definition 2: 1f two rules r;, r; of party P can be joined
losslessly according to the given join schema, and the resulting
information [A; |J A;, J; > J;] is also authorized by another
rule r; of party P, then we say the two rules are ‘“upwards
closed”. For a set of rules, if any two rules that can be joined
losslessly are “upwards closed”, we say the set of rules is
consistent, and the rules form a consistent closure.

As access rules are usually designated among the parties
based on their business needs, the given set of rules is usually
inconsistent. Therefore, it is desired to have a mechanism
to add the necessary rules so as to make the rule set a
consistent closure. Although we are discussing the problem
under cooperative environment, the rule consistency property
only applies to each individual parties only. It is because that
the inconsistency of rules is caused by local computations. In
other words, it is only required that the rules given to one party
form a closure, and the rules on other different cooperative
parties are considered separately. Thus, we inspect one party
at a time, and the mechanism for achieving consistent closure
below only involves rules on one party.

D. Key attributes hierachy

Since we assume all the basic relations are in BCNF, and
the join paths are the results of lossless join operations, the key
attributes of basic relations in the given join schema form a
hierarchal relationship. For instance, suppose that the relations
R, S have their key attributes R.K and S.K respectively. If
these relations can join losslessly, then the joining attribute
must be the key attribute in at least one of them [1]. That is,
either the join is performed on R.K, S.K, or R.K is the same
attribute as S.K. In either case, one key attribute from a basic
relation is also the key attribute of the join result of the two
relations. Therefore, if the join is performed over the attribute
S.K (R.K # S.K), then the attribute R.K can functionally
determine the relation S. In such case, we say R.K is at a

higher level than S.K, denoted R.K — S.K. Thus, for a
given valid join path, the key attribute of the join path is a
key attribute from a basic relation. We call the key attribute
of the join path in an access rule as key of the rule. Also, the
join attributes in the join paths are always key attributes of
some basic relations so these join attributes form the hierarchal
relationship. For instance, in the running example, the key
attribute oid is at the top level, and we have the hierarchal
relationship for three key attributes, where oid — pid — sid.

For each key attribute of basic relation, we create a group
for the rules that take this attribute as their key attribute. As
the rules within this group share the same key attribute, any
two of them can join over their key attributes.

Definition 3: A join group is a group of access rules
associated with a key (join) attribute, where all the attributes
in these rules functionally depend on this attribute. If a join
group is consistent, then it is called a consistent join group.

Since some rules can be the result of local computation over
other rules, there also exist relationships among the rules. In
fact, the relationships are based on the join paths of the rules
as they present the possibilities of join operations. Given a rule
r¢ with join path J;, we call a join path as a sub-join path of
Jy if it is a join path that contains a proper subset of relations
of JR;. We say a rule defined on a sub-join path of J; is a
relevant rule to ;. A rule r; can be locally generated only by
combining the information from its relevant rules, otherwise,
the generated rule contains extra information from relations
not in J;. Based on the relevance relationship, the rules are
organized in a graph structure. Such a graph has different
levels according to the different lengths of the join paths. Each
node in such structure is a rule marked by its join path. Two
nodes are connected if one is the relevant rule of the other. For
instance, figure 2 shows a graph structure. J, is a sub-path of
Jg, and 7o is a relevant rule to rg. They are connected in the
graph, and they are on different levels.

III. CONSISTENCY CHECKING ALGORITHM

Given a set of rules, our goal is to generate the consistent
closure of it. Our algorithm uses the join attribute hierarchy
property and join groups to efficiently generate the consistent
closure. The rules are first divided into different join groups
and consistent join groups are generated. Next, based on the
join attribute hierarchy, each join attribute is considered for
deriving further rules, and any such rules are added to the rule
closure. When this procedure terminates, we have the entire
consistent closure.

A. Consistent join group generation

The first step is to generate the consistent join group.
With the input as a join group of some given rules, the
algorithm considers each derived rule in the order of join
path length. When counting the join path length for a group,
we only include the basic relations whose key attributes are
the attribute associated with the join group, and we call these
relations as dependent relations of the group. A join path that
involves only dependent relations is called a dependent join
path. Relations whose key attributes are not this attribute are
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Fig. 2. The consistent join group of oid

called optional relations. Optional relations or join paths are
associated with the dependent join paths. In the graph, we only
assign one node for each dependent join path. If the given rule
set includes two or more rules that have the same dependent
join path, they are assigned to the same node in the graph
but identified with their optional relations. When generating
the consistent join group on the higher level parent nodes of
this node, the algorithm needs to generate corresponding rules
using each of the rule associated with this node. We will use
our running example to illustrate this.

The join paths discussed below to generate the consistent
join group are all dependent join paths. The algorithm looks
for each join path length to check if a pair of rules can be
joined to form a join path of desired length. Starting from the
length of 2, the algorithm takes rules with length less than 2
and generates all the pairs of them. If the resulting rule is not
present in the given join group, the algorithm adds it to the
group. Otherwise, the resulting rule is merged with the existing
rule on their attribute sets. Meanwhile, the graph structure is
also built and edges are added between the resulting rule and
the rules being examined.

Next, the algorithm checks join path length of 3 to & where
k is the number of dependent relations in the join group. When
inspecting the length ¢ join-path, the algorithm first takes the
rule r,, with maximal length (m < <¢) in the current join
group. The algorithm then looks for possible pairs including
Tm, SO the other rule r; whose dependent join path should
have the property that |JR; \ JR,,| + |JR| = i. The rules
are chosen in the reverse order of join path length since the
rule with longer join path includes all the attributes from its
relevant rules. All the rules with join paths that do not satisfy
this property will not be considered in pair with r,,, and a
rule is never paired with its own relevant rules. By iterating
over all the join path lengths, the consistent join group can be
generated.

To illustrate the process, we use the running example. The
first 4 rules have the same key attribute oid, and they are put
into the same join group of oid. Within these rules, r4 has
an optional relation W which does not depend on oid. It is
only counted as join path of length 1 and is associated with
the node of r; since its dependent join path is the same as
Ji. Then the algorithm begins with join path length of 2. As
the only rule with join path length less than 2 is 71, no pair is
found. However, the given rules 72 and r3 are both of length 2,
so they are checked with r; to see the relevance relationship.

Thus, r3 is connected with 7; in the graph. Next, the algorithm
checks the length of 3. Since this join group only includes 3
different relations {E,C, S}, this is the maximal length to
check. The algorithm first takes ro and looks for the rule can
pair with it. Among the join path J; and Js, Js is selected
since its length is longer, and there is no need to further check
with Jp as it is relevant to J3. Therefore, a rule rg with join
path > C' > S is added to the join group with the attribute
set Ag | J As. In the graph structure, this rule is connected with
both r9 and 75.

In addition, rule 74 has the optional relation W, and it is
associated with r; in the group. Therefore, all the rules that
ry relevant to also have this optional relation. In such case,
based on rg and rs3, another two rules are added into the
join group. This makes join group consistent and is listed in
Table II. Here the first 4 rules are given and rule 6 to 8 are
added by the algorithm to make the join group consistent. The
built graph structure is shown in Figure 2. In the figure, the
rule numbers are indicated beside the rule join paths, and the
dashed box shows the optional relation of W. Since r4 has
the optional relation £ and overlaps with r; on dependent
join path, all the parent rules of r; which are r3, ¢ should
also have corresponding rules including the optional relation
W, which are the rules r7, rs.

Rule No. | Authorized attribute set Join Path Party
1 oid, pid, total} E Pg
2 oid, issue, address} S Xgiq C Pg
3 oid, pid, total, issue} E 459 C Pg
4 oid, pid, sid, location, to- | E i<p;q W Pg
tal}

6 {oid, pid, total, issue, ad- | E DXpiqg S ™pia | PE
dress}

7 {oid, pid, total, issue, loca- | C' Xyiq E XNpiq | PE
tion, sid} w

8 {oid, pid, total, issue, loca- | S y;q C XMoiq | Pr
tion, sid, address} E ppig W

TABLE II

GENERATED CONSISTENT JOIN GROUP OF oid

B. Iteration of key attributes

We take advantage of the key attributes hierarchy property to
develop a mechanism that can achieve the consistent closure.
As the key attribute hierarchy can be obtained based on the
given join schema, and we assume this information is available
when the algorithm is being executed.

At the beginning, the algorithm makes an empty set called
target rule set, and the algorithm keeps adding rules into this
set. At the end, the target rule set is the rule closure we need.
For the given set of rules, the algorithm first puts each rule into
different join groups based on its key attribute, and it will only
be assigned into one join group. Then, for each join group,
the algorithm generates the consistent join group respectively.

Next, the algorithm iterates each join group according to the
level of its associated attribute in the key attribute hierarchy.
To begin with, the algorithm inspects the join group of the top
level attribute. All the rules in the group being inspected are
put into the target rule set first. Then, the algorithm checks
the lower level groups one by one. For each join group being
checked, all the rules in the current target rule set are iterated.
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If the rule r; from the current target rule set contains the join
attribute that is associated with the join group being checked,
then each rule in the join group being checked can join with 7.
The algorithm generates all these rules by making the union
of join paths and the attribute sets, and it adds these generated
rules into the target rule set. If there are already a rule in the
target rule set with the same join path, the generated rule is
merged with the existing rule by making union of the attribute
sets from the rules.

As the algorithm iterates all the join groups, the target
rule set will keep grow and eventually form the consistent
closure. As rules are added to the target rule set, the algorithm
also updates the graph structure capturing the rule relevance
relationships. If a new rule is generated, it is appended to
the graph. Connection edges are added between the rule and
the pair of rules that generate it, and the attribute set can be
updated. The detail algorithm is described in Alg. 1.

We can use the running example to illustrate the process of
join group iteration. According to the key attribute hierarchy,
oid is the top level attribute. Thus, the consistent join group
of oid which is listed in Table II is copied to the target rule
set. The only remaining join group is the group of pid since
there is no given rule takes sid as key attribute. Also, there is
only one rule 75 in the join group of pid, and this join group
is already consistent. As in the key attribute hireachy, pid is
on the next level of oid, the algorithm checks each rule in the
current target rule set to see if it contains the attribute pid. The
set of rules {ry,r3,74,76,77,7s} all have this attribute, so 6
rules joining with 75 are generated and added to the target rule
set. However, some of these rules have the same join paths and
they are merged with existing rules, so only 3 new rules are
added to the target rule set. Finally, we generate the consistent
closure as listed in Table III. The last three rules are generated
in this process. Figure 3 shows the built graph structure, where
relevant rules are connected by edges. The attribute sets of the
rules are shown in boxes and the join paths together with rule
numbers are shown above. The rules are put into 5 levels based
on their join path length.

Rule No. | Authorized attribute set Join Path Party
1 {oid, pid, total} E Pg,
2 {oid, issue, address} S Mgig C Pr
3 {oid, pid, total, issue} E<iyiq C Pg
4 {oid, pid, sid, location, to- | E >p;q W Pg

tal}
5 {pid, sid, factory} W <igiq P Pg
6 {oid, pid, total, issue, ad- | E Xyiq S Moia | Pr
dress}
7 {oid, pid, total, issue, loca- | E Xy;q C Mpiq | PE
tion, sid} w
8 {oid, pid, total, issue, loca- | S Xg;q C XMoiq | Pr
tion, sid, address} E >pig W
9 {oid, pid, sid, factory, total} | E >piq W X9 | PE
P
10 {oid, pid, total, issue, sid, | C Xy;q E Mpiq | PE
factory } W <igiq P
11 {oid, pid, total, issue, loca- | C MXyiq S ™Moia | Pr
tion, sid, factory, address} E <ipig W g4
P

TABLE III
GENERATED CONSISTENT CLOSURE BASED ON GIVEN RULE SET

C. Average case complexity

The complexity of the algorithm depends on the given join
schema and given rules. In worst case, generating a consistent
join group takes exponential time. However, in real cases,
usually a join group will not include more than 4 dependent
relations. We make the assumption that the maximal number of
dependent relations in a join group is 4. In addition, we assume
there are at most k given rules in a join group. Within a join
group, there are some given rules overlap on their dependent
join paths. Assuming the number of overlapped rules is p,
then there are £k — p nodes for initially given rules. As the
most number of relations is 4, we have kK — p < 16. For the
algorithm, at most 22 pairs of nodes will be examined, and
there are at most 11+8p rules are added into the consistent join
group. As k and p are usually small, the number of rules in a
consistent join group is usually less than 20 and the complexity
of generating it is also low. we can think the generation of
consistent join groups takes constant time and there are at
most C rules in a consistent join group.

If there are m join groups in total, it looks like we have the
complexity of C™ in worst case. However, within a join group,
there is only one dependent relation that can join with the
rules in the next join group to be inspected. If at most v rules
including such dependent relation, then at each step only v C
rules will be added, and the complexity is O(v*C* (m —1)).
In many cases, a join group contains only one or no rule such
as the join group of pid and sid in the example, so C' is
fairly small for many join groups. Also, the length of a valid
join path m is usually very small as a join of 5 relations
from different enterprises should be a rare case. Therefore,
the complexity of the algorithm in real scenario is much lower
than the theoretical worst case one.

Theorem 1: Given a rule set, the algorithm generates its
consistent closure.

Proof: Assuming there are two random rules r;,r;, we
check whether the consistent closure generated by the algo-
rithm always have 7y, which is the join result of them. r;,7;



Algorithm 1 Rule Closure Generation Algorithm
Require: Given access rule set R on one party
Ensure: The set of rules RT that is a consistent closure
1: Put rules from R into join groups based on their key
2: Put the key attributes of relations into a priority queue @)
based on its level in hierarchy
3: for Each join group G do
4:  Generate the consistent join group GT
5:  for Length k < 2 to 4 do
6: Mark all rules unvisited
7
8
9

for Each unvisited rule r; length < k& do
if Exists r,,, where |J; — J;| + |J;| = k then
Join r; with r,, and get result r;

10: if There is no rule in R™ of join path .J; then
11: Rt —r;

12: else

13: Get the rule and merge with r;

14: R™ — updated r;

15: Mark its relevant rules visited

16: while Q # () do
17:  Dequeue the key attribute, and get its associated G™
18:  if RT # () then

19: for Each rule r,. in RT do

20: if 7, includes the key attribute of G then

21: for Each rule r, in G do

22: Join r,. with r, and get result r;

23: if There is no rule in R™ of join path .J; then
24: Rt —r;

25: else

26: Get the rule and merge with r;

27: R* — updated r;

28 RT «—|JGT

can be given rules or the rules generated by the algorithm.
Firstly, if 7;,7; have the same key attribute, the two rules
will be in the same join group. When the algorithm generates
the consistent join group, it tries all possible combinations
of the dependent relations. In addition, optional relations are
considered from bottom up, so there is always a rule in the
generated consistent join group that has the same join path
as ri. When checking the rule relevance in the graph, the
attributes from the relevant rules are added to the higher level
rules so the rule has the same join path as r; also has all
the attributes from r; and r;. Since the algorithm examines
each join path length in ascending order, it does not matter if
r;,7; are given rules or generated rules, and 7;,7; are always
upwards closed.

If r; and r; are not in the same join group, then we assume
the key attribute of r; is on the higher level than the key of
r;. If both rules are the given rules and r; includes the key
attribute of 7;, when the algorithm iterates the join group of
r;, r; is already in the target rule set, and their join result
is put into the target rule set. On the other hand, if r; is a
generated rule, it is always added into the target rule set by
the algorithm. if it can join with r;, the result is added to
the target rule set also. Thus, after checking the join group of

75, all the possible joins over that join attribute are examined.
All the rules generated afterwards are joined over the attribute
of lower level of 7;, and rules from these join groups never
include the key attribute of 7;. If r; is a generated rule, it is
in its consistent join group, so the algorithm adds the result of
r; and r; into the rule set. Therefore, all the rules are upwards
closed, and the generated rule set is consistent.

|

IV. CONSISTENT ACCESS RULE CHANGES

As time goes, cooperative parties may change the access
rules because of the change of business needs. A change of
access rule can either be granting more access privileges to
a party or revoking some existing privileges. In the case of
access rule are changed on a party, it may cause new conflicts
among the rules. Thus, a mechanism is needed to maintain the
rule consistency while access rules are changed.

A. Two types of rule changes

In cooperative environment, the access rules can be changed
at each party individually and can also be changed between
several parties at the same time. One possible architecture for
the authorization is that the rules are stored at the central
place different from any cooperative parties. There exists an
independent query optimizer reading the authorization rules
and generating the query plans. However, usually cooperative
enterprises do not share a single independent query optimizer.
Instead, each party that answers the queries usually generates
the query plan locally. Therefore, without a centralized party,
each cooperative parties should keep a copy of the access rules
locally. Each party needs to know more rules than the ones
given to itself as it can exchange information with parties that
have the rules on the same join paths. Therefore, we assume all
the access rules are duplicated at different cooperative parties.
We discuss two types of rule changes below.

1) Independent change: This type of rule change only
applies to a single party. Although a join path may involve au-
thorizations from several parties, the change is only happened
to one party. It may because of one party no longer trusts the
other or their business relationships get changed. Such changes
usually affects only a small set of rules. Even if the change
only takes on a single rule, to maintain the consistency of the
rule set, usually a set of rules need to be changed accordingly.
The discussions below about the granting and revoking of
access rules can directly applied to this type of change. After
the party changes its access rules, it board-casts the change to
other cooperative parties.

2) Cooperative change: Sometimes a group of parties may
want to update the access rules among them at the same time.
These parties may negotiate the rules together and apply the
changes on multiple parties at the same time. The group of
rules need to be updated as a whole, and we call this type of
change as cooperative change. In such case, the updates on
several parties need to be synchronized. We call the parties
involved in a cooperative rule change as change cooperative
parties. A cooperative change need to be performed among
these parties atomically from a temporal perspective.



To achieve that, we can 2PC protocol for the rule updating.
Among the change cooperative parties, one party is selected
as the master party, which we can also call it coordinator.
In real scenario, usually the cooperative change is invoked
by a single party, and in such case that party can work as the
coordinator. All the other change cooperative parties are called
slave parties.

Since we assume the rule changes do not happen frequently,
each party can only be involved in one cooperative change
process at a time. Therefore, if a slave party is under an
updating process, it will have a lock on the current rules
given to itself and other rule updating requests received are
not accepted and it acknowledges the master node about the
status.

Therefore, to perform a cooperative change on the rules, the
mechanism works as below. According to the 2PC protocol,
the update process is divided into a voting phase and a commit
phase. In the voting phase, the master party (coordinator)
sends messages to all slave parties indicating the set of rules
being changed, and each slave party is required to update the
rules related to itself. If the slave party can update its rules,
which means there is no ongoing rule updates at this party,
the agreement will be sent back to the coordinator. Only if the
agreements from all salve parties are received, the coordinator
will go into the commit phase. In the commit phase, the
coordinator sends a commit message to slave parties to finish
the rule update and locks are released. Otherwise, the updating
transaction is aborted, and the coordinator will try it later.

B. Consistently grant more information

When more access privileges are granted to a party, we need
a mechanism to maintain the consistency among the rules.
There are also two types of grants. The first is adding non-
key attributes (non-join attributes) to a rule. If a rule is granted
with more attributes, then the algorithm first selects the higher
level parent rules of this rule in the graph. We search upwards
in the graph, and this can be done with a depth first search.
Along the path it searches, if the rule being inspected does
not have these expanded attributes, then the algorithm adds
these attributes to the rule. If the rule being inspected already
has these attributes, the search along this path will stop and
another path will be picked. Consequently, the added attributes
will be propagated to all the related rules that are on the higher
level of the rule being changed. For instance, in our running
example, if the attribute delivery is added to ry, then the rules
r¢, T8, 11 on the same path all need to add this attribute.

In some cases, the attribute added is not the key attribute of
the rule being modified, but the attribute is the key attribute for
other rules. Therefore, by adding this attribute, the modified
rule can possibly further join with other rules. To deal with
this situation, once a join attribute is added to a rule (non-key
attribute for the rule being modified), the algorithm checks if
there exists a join group associated with this attribute. If that
is the case, rules which use this attribute as the key attribute
are selected from the generated consistent closure. Each rule
selected is then joined with the rule being modified, and the
resulting rule is added to the rule set or merged with existing
rule. Only these rules need to be added to the rule set.

On the other hand, there is another type of change of rules,
where a rule on a new join path is granted to a party. In such
case, we need to check if this rule can join with existing rules
to generate legitimate new rules. The mechanism is similar to
the previous approach for generating the consistent closure. As
the newly added rule r,, has a new join path, we first obtain
the key attribute of r,, and then r,, is put into the join group
whose associated attribute is the key attribute of r,. Within
this group, as a new rule is added, the algorithm recomputes
the consistent join group. This can be done efficiently since
these rule all can join over their key attributes. In fact, the
rule 7, is checked with existing rules in the consistent join
group. 7, is inserted into the graph of the join group, and its
relevant rules and the rules it relevant to are not checked with
it. All the other rules are checked and r, can join with each
of them to form a new rule and put into the consistent join
group. The algorithm then keeps the set of newly added rules
for the following rule generation.

In the next step, each of the newly added rules is iterated to
see what are the other rules that can be generated based on it.
For each newly added rule r,, the algorithm checks the join
attributes in its join path (excluding its key attribute), and for
each join attribute the algorithm combines r,, with the rules
in the join group and add them into the newly added rule set.
This process actually finds all needed rules which has the same
key attribute as the key of r,. After that, the algorithm looks
for existing rules that include the key attribute of r, but not
using it as their key attributes. Each such rule can join with the
newly added rules in the group of r,, over the key attribute of
ry. The algorithm adds all these generated rules into the rule
set so as to complete it as a consistent closure. The attribute
set of the rules should also be considered. If there exists a rule
on the same join path, the attribute sets of the two rules are
merged.

In our running example, we can think a new rule 7
with join path E <,4 S is added whose attribute set is
{oid, pid, total, address}. In this case, the algorithm will put
the rule into the join group of oid. In the graph structure,
such a rule has relevant rule r1, and it is the relevant rule
of rg,rs. Therefore, other rules in the join group are paired
with r15. However, most of these generated rules already exist
in the current join group, so the only new rule ;3 need to
be added is on the join path of S <,;q E ><pq W. Next,
the algorithm checks the rules rq2,713. Since both of them
include pid as non-key attribute, and there is no join group
of sid, both rules are paired with the join group of pid. This
results in only one additional rule r14 on the join path of
S Doia E >pig W g9 P. Since oid is the top level join
attribute, by adding this rule to the rule set, the consistent rule
closure is achieved.

In worst case, if there are already n rules exist in the closure,
and there are C rules in the join group. Adding one more
rule will need adding additional C' — 1 rules to maintain the
consistency. For the above mechanism, the recompilation of
the join group will take C steps since each existing rule need
to be checked. The remaining complexity depends on the join
groups associated with the added rules. If the total number
of levels is u, and assuming at most s rules in a join group



has the join attribute of the inspected group, then the number
of pairs to examine in for one join group is s = C. The total
complexity can be O(C * u * s).

C. Revocation of existing access rules

Besides grant of more access privileges, the changes on
the rules can also be the revocation of some existing access
rules. Similar to the grant case, we consider the revocation
operation can be just on some non-key attributes or completely
removal of one rule. We first discuss the situation that non-
key attributes are revoked. The revocation of attributes on just
one rule usually causes inconsistency. It is because that its
relevant rules may still have the revoked attribute, and the party
can still access to these attributes through local computation.
Therefore, we need to also revoke these attributes from such
relevant rules. Based on the built graph structure, the algorithm
retrieves the relevant rules of the rule being modified, if any
relevant rules include such revoked attributes, these attributes
are also revoked from these rules.

For instance, we can take the example of Figure 3. Let’s
assume the modification is made on the rule rig, and the
attribute factory is revoked. In such case, its relevant rules
r9,T5,74,71 are checked. Attribute factory should also be
revoked from these rules. Therefore, rg, 75 are modified to
keep the rule closure consistent.

On the other hand, if one rule with a join path is completely
revoked from the rule set, we need to make sure that such join
path can no longer be generated from the remaining relevant
rules. Therefore, each possible ways to enforce the join path
need to be obtained and the possible pairs should be taken
apart. To achieve that, the algorithm uses the graph structure
built before. In the graph, only the direct relevant rules of
the revoked rule r, are examined. The direct relevant rules of
T, are the relevant ones in the graph that directly connected
with 7, with one edge. For each of the direct connect rule r,
the algorithm computes its matching join path J,, for J,. The
matching join path J,, is a join path that J,, 1 Jy = J,,
Jm # Jy, and |J,,| is the minimal one among such join paths.
Given the join schema, J,,, can be efficiently determined by
computing the minimal set of JR,, = JR, — JR4. If such
set does not form a join path that is a sub-path of J,,, then
the matching join path of r4 does not exist. Otherwise, the
matching join path J,, is obtained. In the graph, if a rule
containing .J,,, is not found, higher level rules connecting to
it are examined, and the one with minimal join path length is
selected as J,,,.

As we can check the enforceability of the rules [12], we
assume we already know what are the locally enforceable
rules. Thus, for each pair of rules selected, the algorithm needs
to remove one rule from it so as to make the join path no longer
enforceable. If a rule in the pair is not locally enforceable, we
prefer to remove it since it does not cause cascade revocations.
In contrast, if a rule in the pair is locally enforceable, by
removing this rule, we need to make sure all the rules that
can compose this one are taken apart. Thus, a cascade of
revocation will occur. In addition, when iterating each pair,
the algorithm also records the number of appearance of the

rules. The rule with most appearance is more preferable to be
removed since removing one such rule can break several pairs.
For the locally enforceable rules that are being removed, the
algorithm puts them into a queue so that they are processed in
a cascade manner. In worst case, it checks exponential number
of pairs, and half of the existing rules need to be removed from
the rule set.

For instance, in figure 3, the rule 71 is completely removed.
This rule has three direct relevant rules {ry,rg,73}. r9 is
first examined, and its matching join path is {C'}. As {C}
is not available, rs is paired with rg. On the other hand,
rg can pair with 75,79, and 74 cannot pair with any other
rule. Therefore, the algorithm needs to break all the pairs of
rules {(r3,75), (r3,79)}. Since r3 appears in both pairs, the
algorithm will revoke it also, and it is put into the queue.
As 73 is not locally enforceable, we do not need further
revocation. Finally, revoking 719 with r3 will keep the rule
closure consistent.

The above mechanism to remove a rule is complicated and
it considers only for one next level and do not know further
levels. Thus, we also consider to remove the rules in another
way. A revocation is usually issued by a single party, and
this party usually revokes the access rules with its own data.
Therefore, when a revocation is issued, it is common for the
party to revoke all the rules including its basic relation. If this
is the case, the revocation can involves a set of rules and all
including that basic relation, and the consistent closure is still
maintained.

According to this idea, if we want to remove a rule, we can
also remove a set of rules containing the same basic relation.
Thus, another possible way to consistent revoke a rule can
be found. The algorithm can first obtain all the relevant rules
of r,. For each relevant rule, the algorithm records the basic
relations appeared in the join path. As last, the basic relation
associated with fewest number of rules is selected, and rules
including this basic relation are removed from the set.

Back to our example, and we want to revoke rule 7ig.
This mechanism first retrieve its relevant rules which are
{r4,r5,79,73,71}. These join paths are examined, and the
appearances of 4 basic relations are checked counted. There-
fore, relation C' appears once, E appears 3 times, W appears
3 times, and P appears twice. Thus, the algorithm tries to
remove the rule whose join path has C. r3 is removed, and
this result is the same as the previous algorithm. In general,
these two mechanisms produce different results.

Here, we argue that the rule closure property is different
from the rule enforcement issue. Though removing a set of
rules will affect the enforceability of other rules, we only
focus on maintaining the rule consistency property here. For
the second approach, the complexity is O(n  t), where n is
the number of relevant rules, and ¢ is the maximal number of
relations in a join path.

V. QUERY PLANNING WITH ACCESS RULE CHANGES

In this section, we consider the problem of access rule
changes when queries are being processed. We assume that we
have an existing algorithm [12] to generate a query plan among



the cooperative parties based on the consistent closure. In
addition, as not all the rules can be enforced among the parties,
we have an algorithm [12] to check the rule enforceability.
For instance, if there is an access rule saying party P can
access the join result of R > S, but there is no existing party
can access the two relations at the same time, then there is
no way to enforce the rule. For each rule in the consistent
closure, the algorithm tells if it can be enforced or not, and
only rules that can be enforced are useful for query planning.
While a generated query plan is being executed, if the access
rules are updated, then some steps in the plan may not be able
to be executed. As grant of access does not affect the query
plan execution, the rule changes here are revocations on access
privileges. We discuss how to adapt the query execution with
the access rule changes below.

A. Snapshot solution

Since the biggest concern of this problem is that the access
rules are changed during the query plans are being executed,
one possible solution is that at the time each generated query
plan is executed, we make sure the access rules related to this
plan are not changed. Thus, in this solution, we first obtain
a snapshot of a consistent state of the rules before doing the
query planning, and the query plan is generated under such
snapshots rules so that the execution of the query plan is not
affected by the rule changes.

Assuming the query ¢ is received by a party P which has
the rule authorizing the answer of the query, and the party is
going to do the query planning locally. Therefore, the party P
first sends the access rules it caches to other parties with the
mark of query q identifying this snapshot is exclusively for q.
Each cooperative party that receives the message compares its
rules with the received rules from P. Each party should either
agrees on the rules regarding itself or sends its updated rules
to the party P. If a party is performing a rule updating, it may
send a notification back to P, and P have to defer the query
planning and try again later.

Therefore, party P can always obtain and plan with the
updated rules, and the party receiving the messages will take
a snapshot on the rule set it acknowledged to P with the mark
of the query ¢. Later, even if the party updates its rules, it
keeps these snapshotted rules until the query is answered.
Then, the party P will generate the query plan using the
query planning algorithm, and the plan is executed on these
cooperative parties. If there is no rule update between the time
of P making the snapshot and the query is answer, the query
plan can be executed as usual. If the access rules on a party are
updated, the party may lack the authorization to perform the
steps in the query plan. In this case, it can use the snapshotted
rules with the marks of ¢ to retain the authorizations from
other parties. Other cooperative parties will also honer the
snapshotted rules even if currently the access rules are updated.
Therefore, the query plan generated from the snapshot can
always be executed.

Finally, as soon as the query ¢ is answered, party P sends
finish messages to other parties indicating that the execution
of the query ¢ has finished. A party receives this message will

remove the snapshotted rules associated with query q. Thus,
any following queries cannot take advantage of these rules and
they can only be processed according to updated rules.

To give an example, we assume there are three parties
Pr, Pg, Pr. Each party can access their own relations R, S, T
These relations share the same key attribute so that they can
always be joined. In addition, Py is allowed to get the relation
R, and the result of R >x T'. Pg is allowed to get R < T,
and of course the join of R .S < 7T. The incoming query ¢
asks for the information on the join path of R >1.S > T and
it is authorized by the rule on Ps. As Pg is going to generate
the query plan, it first send messages to snapshot the current
rules. Based on these rules, a query plan will first let Pr to
get the relation R and generate the result R 0 7', and this
result is send to Pg to perform a further join and answer the
query g. At the time the plan is generated, the rules given to
Pr are modified, and the rule that authoring Pr to access R
is revoked. In such case, when Pr executes the query plan,
it will use the snapshotted rule associated with g. Therefore,
party Pr knows the access for R is to answer the query g,
and the access is allowed. After ¢ is answered, Ps sends the
finish messages to remove the snapshot. At the end, party Pr
can no longer access the relation R.

B. Dynamic planning

In stead of the snapshot approach, as we assume the access
changes is infrequent, we can use the mechanism to adjust the
query plan dynamically. The idea is to execute the query plan
first, and whenever a step cannot be executed because of the
rule change, the algorithm looks for alternative ways to replace
the step and continue the query plan. However, sometimes
the access change makes the query no longer answerable, and
therefore the existing plan may be aborted, and it should be
checked again to see if there still exists a valid query plan to
answer the query. Here, we also have two types of revocations.

1) Revocation of non-key attributes: If only the non-key
attributes in the rules are revoked, the generated query plan
should still be able to run. However, these revoked attributes
cannot be retrieved at these steps in the plan. Thus, the
algorithm first checks if the following steps in the plan can
access these attributes efficiently. If this is not the case, as
the plan can still be executed, the result will only have the
partial answer of the query without these revoked attributes.
Therefore, the algorithm constructs another query to retrieve
these missing attributes. The new query ¢’ contains only these
attributes as well as the key attributes from their relations
which are used to join with the previously got partial results.

Since the planning party P can no longer retrieve these
attributes, such a query must be answered by another party,
and party P will send the obtained partial result to that party.
Thus, the party to answer ¢’ must have a rule on the same
join path as the one in query g. If such a party exists, the
query planning algorithm is re-executed to get a plan for ¢'.
Otherwise, the query ¢ cannot be answered. If a re-planning
is possible, the planning party will first collect rules from
cooperative parties to get the most up to date rules, and then
run the query planning algorithm. Finally, the result of ¢’ is
joined with the partial results of ¢, and that answer is obtained.



2) Revocation of join paths: In the previous case, the
enforceability of the join paths are not affected. Consequently,
the query plan can continue to execute. In contrast, if a rule is
totally revoked, it is possible that the current plan cannot be
executed any more. In this situation, the algorithm looks for
an alternative party that can perform these steps. If the same
intermediate result can be obtained from the alternative party,
the following steps in the plan can still be executed. If the
replacement of the steps cannot be found, the algorithm has
to abort the current plan. Since it is not clear whether the rules
and their join paths are still enforceable, the rule enforcement
checking algorithm needs to be performed to determine the set
of enforceable rules. If query ¢ is not answerable anymore, the
algorithm finishes. Otherwise, the query planning algorithm is
re-executed, and a new plan is generated if possible. Since
we assume the access changes are infrequent, this dynamic
adaption mechanism works if the new plan is generated.

VI. RELATED WORK

The problem of controlled data release among collaborating
parties has been studied in [7]. The authorization model in this
paper is identical to ours and provides the motivation for our
work. Its main contribution is an algorithm to check if a query
with a given query plan tree can be safely executed. It assumes
all the given rules are already upwards closed. However, this
is not the case in real, and access rules are usually made
without consideration of consistency. Therefore, maintaining
the consistency of the set of given rules is a crucial problem,
that we address in this work.

In another work [6], the same authors evaluate whether the
information release the query entails is allowed by all the
authorization rules given to a particular user, which considers
the possible combinations of rules and assumes that the rules
are defined in an implicit way. Their solution uses a graph
model to find all the possible compositions of the given rules,
and checks the query against all the generated authorization
rules. In our work, we assume access rules are explicitly given.
Data release is prohibited if there is no corresponding rule.

There are some works on the access control in collaborative
environments. In [16], the authors examined existing access
control models as applied to collaboration, and pointed the
weaknesses of these models. In addition, [9], [15] applied
RBAC in the collaborative environments. As social network
get popular, [5] discussed the problems in these situations,
and [10] proposed a web services based mechanism for access
control in collaboration. All these access control models are
different from the one we are using. In [14], collaboration
among enterprises was also studied, but that work focused on
different application data and multilevel policies.

Processing distributed queries under protection requirements
has been studied in [4], [8], [13]. In these works, data access is
constrained by a limited access pattern called binding pattern,
and the goal is to identify the classes of queries that a given set
of access patterns can support. There are also classical works
on query processing in centralized and distributed systems [2],
[11], but they do not deal with constraints from the data
owners.

VII. CONCLUSIONS AND FUTURE WORKS

As more and more enterprises work cooperatively to per-
form computations, securely providing access to cooperative
data is important. We use an authorization model for coop-
erative data access based on the join results of the relational
data. However, in the cooperative environment, access con-
flicts may arise among the rules made according to business
requirements. We proposed a mechanism to make the set
of cooperative access rules consistent. In addition, we also
presented algorithms to maintain the rule consistency in the
cases of granting and revocation of access privileges. At last,
as running queries may be affected by the rule changes in the
cooperative situation, we discussed the mechanisms for query
planning that can adapt to the access rule changes.

In the future, we plan to perform experiments with real
world cases to extensively evaluate the complexity of the
algorithms. In addition, Chinese wall policies [3] will be
considered to remove the inconsistency among the rules, and
how to implement it will be studied. Moreover, we will further
look into the more dynamic situation where parties can be
added and removed from the cooperative environment.
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