
Chapter 1

PERFORMANCE IMPACT OF UNCACHED

FILE ACCESSES IN SPECWEB99

Krishna Kant

Intel Corporation, Beaverton, OR, USA

kkant@co.intel.com

Youjip Won

Dept. of Elect & Computer Eng., Hanyang University, Seoul, Korea

yjwon@email.hanyang.ac.kr

Abstract

In this paper, we examine the characteristics of SPECweb99 bench-
mark with respect to its �le-caching properties. For this purpose, we
develop a simple analytic model of �le-cache and use it to study a num-
ber of characteristics of the workload. We �nd that although the mem-
ory requirements of SPECweb99 increase quite rapidly with the target
throughput, the highly skewed access pattern means that a relatively
small amount of memory can provide a very high cache hit ratio and
thereby near maximal throughput. In particular, we �nd that less than
10% caching of the �le-set can achieve 95% or more of the throughput
that full caching can achieve. The conclusion is that in SPECweb99
benchmarking setups, it pays to carefully evaluate the e�ciencies of �le
cache management, I/O management, and I/O subsystem components
instead of attempting to cache huge portions of the �le-set. The simple
analytic model developed here is also indispensable in developing a per-
formance model for SPECweb99 that can predict maximum achievable
throughput for various con�gurations and platform parameters.

Keywords: Web-server, �le-cache, HTTP, dynamic-pages, analytic-modeling, sim-
ulation

1. BACKGROUND

Much of the Internet growth is being fueled by Web usage, which
makes web-server workload characterization an important and timely

1

2

issue. Until recently, SPECweb96 was the only widely recognized bench-
mark for comparing performance of web-servers [7]. SPECweb96 suf-
fered from several weaknesses including lack of dynamic web pages, com-
pletely cacheable �le-system, very simple request generation process, in-
su�cient skew in access patterns, etc. Many of these de�ciencies have
been tackled in the new web-server benchmark called SPECweb99 [8]. In
particular, the storage requirements and access pattern of SPECweb99
are such that a full caching of the entire �le system may not be desirable
even in a benchmark con�guration. This paper explores �le-caching as-
pects of SPECweb99 to evaluate their impact on disk I/O and achievable
throughput. More speci�cally, the paper concentrates on the bu�ering
of the �les in the main memory for quick access. This �le-cache is usu-
ally maintained by the operating system, but could well be managed
by a user-space utility. The purpose of the analysis is to identify I/O
vs. memory tradeo�s for SPECweb99 workload by examining its �le-
caching characteristics. We note speci�cally that while individual disk
drives may also do data prefetching and caching internally for e�cient
I/O, that aspect is not the focus of this work.

The paper shows that in most cases by bu�ering a fairly small per-
centage of the �le-set in the main memory, it is possible to extract much
of the achievable throughput from the system. That is, the benchmark,
and hence web-servers running workloads similar to SPECweb99 would
not bene�t much from a lot of memory; instead, paying particular atten-
tion to I/O subsystem ine�ciencies might be more important. For the
study, the paper develops a simple analytic model of �le-caching that is
much more e�cient than a brute-force simulation of the �le-cache. This
model is invaluable for developing a benchmark performance model,
which is needed for predicting performance of the benchmark for a va-
riety of con�gurations.

The outline of the paper is as follows. Section 2. provides an overview
of SPECweb99 benchmark and discusses �le-access and other details rel-
evant for �le-caching purposes. Section 3. then develops an analytical
model of �le-cache performance and shows its validation against sim-
ulation results. Section 4. discusses a number of characteristics of the
workload derived from the analytic model. Finally, section 5. concludes
the discussion and outlines future work on the subject.

2. CHARACTERISTICS OF SPECWEB99

BENCHMARK

SPECweb99 uses one or more client systems to create the HTTP
workload for the server. Each client process repeats the following cycle:
sleeps for some time, issues a HTTP request, waits for response, and
then repeats the cycle. The response is a �le in case of the GET request
(or a cookie in case of a POST request). The server throughput is mea-
sured as the number of cycles (operations or transactions) per second.
Stated this way, the behavior is similar to that for SPECweb96. How-
ever, SPECweb99 goes a step further and does not retain a one-to-one
mapping between connections and requests. That is, (a) HTTP 1.0/1.1

Performance Impact of Uncached File Accesses in SPECweb99 3

keep-alive feature is used so that a new connection doesn't need to be
established for each request, and (b) the number of simultaneous con-
nections is regulated explicitly. For the latter, SPECweb99 speci�es that
that the aggregate transfer rate (from server to client) on each connec-
tion does not exceed 50,000 bytes/sec. (To avoid too many connections,
a lower bound of 40,000 bytes/sec is also enforced.) Successive requests
can be made over a given connection with sleep time being dynamically
adjusted to ensure that the byte rate limitation is not violated. At least
70% of the connections must use keep-alive, with unif[5,15] distribution
for the number of HTTP sessions per TCP connection.

SPECweb99 categorizes the workload into two categories: static and
dynamic. There are four di�erent sub-types in dynamic part of the
workload: standard dynamic GET, dynamic GET with ad rotation, dy-
namic GET with CGI (common gateway interface), and dynamic POST.
Except for dynamic POST which makes up only 4.8% of the total work-
load, the remaining 95.2% of the requests are concerned with obtaining
a web-page (or \�le") from a prede�ned �le-set. For static GETs (70%
of the workload), the requested �le is returned to the client as is. In the
other 25.2% of the cases, the returned �le may be modi�ed (e.g., ap-
pended, prepended, or updated with dynamically generated information
such as advertisements). For one-half of the dynamic gets, the dynamic
information is selected based on the user preference speci�ed via a cookie
sent along with the request. The average amount of data appended is
about 6 KB. Although the execution of scripts on the server to create
and add dynamic information is very CPU-intensive, it does not a�ect
�le-caching aspects within the server. In other words, the study here
applies to 95.2% of the tra�c (i.e., all GET requests) irrespective of the
nature of the GET.

Although POSTs form only 4.8% of the entire workload, POSTs
could signi�cantly alter the nature of the workload not only in terms of
CPU usage (which is not relevant here), but also in terms of memory
usage and disk I/O. Every POST must log the information sent by the
client in a �le called POSTlog. Although each POST appends only 140
bytes to POSTlog, the implementation of POSTlog is required to use
a single �le, which results in considerable serialization delays due to
logging. Furthermore, simple implementations may require closing the
POSTlog �le on each write, which means that the �le may evicted from
the �le-cache (and written to the disk), only to be read back in on the
next POST operation. In this paper we ignore any disk I/O or �le-cache
pollution caused by POSTs.

As in SPECweb96, SPECweb99 de�nes the �le-set as a collection of
\directories", each containing 36 �les. The 36 �les are divided into 4
classes, where each class contains 9 �les with regularly spaced sizes. A
class refers to the order of magnitude in terms of �le size (class 0 sizes
are in 100's of bytes, class 1 in 1000's of bytes, etc.). That is, �le no i
in class j has the size S(i; j) given by S(i; j) = 1:024(i+ 1)10j+1 bytes,
i 2 1::9, j 2 1::4. The total size of a directory works out to be about
5.0 MB (M=106).

In SPECweb99, the access pattern is is speci�ed at 3 levels. The
access pattern involves Zipf distribution, which is de�ned as follows:

4

Let N 2 1::N be a discrete random variable with Zipf distribution.
Then,

P (N � n) =

nX
i=0

C

i�
; where C =

1PN

i=0
1
i�

(1.1)

where � > 0 is the parameter of the distribution. The SPECweb99
access pattern can now be speci�ed as:

1. Directory level: Zipf distribution with � = 1 across directory numbers. Since
all directories are identical, the numbering scheme used for directories does not
matter.1

2. Class level: The relative access probabilities for classes 0-3 are 35%, 50%, 14%,
and 1% respectively. That is, there is a strong preference for small �les.

3. File level: A �le popularity index is de�ned by using the permutation mapping
from �le-number (1..9) to the list f9,6,4,2,1,3,5,7,8g. This index speci�es the
relative access popularity of the �le. The access probability itself is de�ned
by Zipf distribution with � = 1 over the popularity index. That is, the access
probabilities for popularity indices 1..9 are as follows:

0.353, 0.177, 0.118, 0.088, 0.071, 0.053, 0.050, 0.044, 0.039

Thus �les 4-6 account for about 65% of all accesses.

From this description, it follows that the average access size is 14.73
KB (where K=1000 rather than 1024 for uniformity), but the median
access size is only 3 KB. This points to strong preference for smaller �les,
which is typical in web applications. We would like to note here that
these statistics are for the stored �les only and not for actual responses
sent out by the server. As noted earlier, dynamic GETs append about
6 KB of additional information, and POSTs only need to return a few
hundred bytes. The e�ective average size (including HTTP and TCP
header overheads) is about 15.2 KB, but that is not of much interest in
this paper. Another point to note (but not very relevant here) is that
SPECweb99 e�ectively disallows optimizations such a \Jumbo frames"
(available in Gigabit NICs) by restricting the maximum packet size of
1460 bytes.

SPECweb99 di�ers considerably from SPECweb96 in terms of �le-
set sizing rules and directory access pattern. In SPECweb96, the web
server is con�gured for a target throughput, say �d. The load generation
mechanism attempts to maintain this throughput so long as the server
is not saturated. Consequently, for good benchmarking results, the
achieved throughput �a is very close to and the design throughput �d
and there is no need to distinguish between the two. �d determines the
number of directories that the server must service. In order to model the
expectation that bigger web servers will perhaps handle larger number
of �les, SPECweb96 requires the number of directories to increase as
the square-root of the target throughput. This, rather slow, increase

1However, Zipf access pattern may allow some optimizations in terms of how the directory
numbers are correlated to the actual location of directories (and their �les) on the disk.

Performance Impact of Uncached File Accesses in SPECweb99 5

allows caching of the entire �le-set in the main memory and thereby
avoids disk reads completely during the benchmark run (following the
warm-up period during which �le-cache is loaded). In particular, it
turns out that a few Gigabytes of memory is adequate to fully cache the
entire �le set even at rather large design throughput. Thus disk I/O
can be avoided even for rather large con�gurations without signi�cantly
raising the per op cost of the con�guration. Unfortunately, this \trick"
hides the ine�ciencies associated with �le-caching, I/O management,
and with I/O subsystem itself. Since complete caching is not practical in
reality, this aspect reduces the usefulness of the benchmark in selecting
a well-designed web-server.

Ignoring some speci�cation di�erences (see below), the concept of
a target throughput and �le-set size as a function of target throughput
also apply to SPECweb99, except that the �le system size now increases
linearly with ops/sec, which makes full caching prohibitively expensive
at large throughput levels. However, the distribution of accesses over
directory numbers is Zipf in SPECweb99, as opposed to the uniform
distribution for SPECweb96. The high skewness of Zipf distribution
makes caching much more e�cient for SPECweb99, which indicates that
it may not be necessary to maintain a major portion of the �le-set in the
cache. In e�ect, this also discourages full caching, and thereby forces
I/O system to play a signi�cant role in performance. How signi�cant is
this role, is the main subject of this paper.

As mentioned above, SPECweb99 explicitly regulates the number
of simultaneous HTTP connections on the server. In fact, the �le-set
size is speci�ed directly in terms of number of simultaneous connections.
Since more connections mean more overhead, a setup would ideally keep
the transfer rate close to 50,000 bytes/sec. With an overall average �le
size of 15.2 KB, each simultaneous connection amounts to at most 3.3
ops/sec. With this translation, we can relate the �le-set size (Dreqd)
and target throughput (�d) as follows:

2

Dreqd = (int) (25 + �d=5) (1.2)

Thus, the memory needed to fully cache all directories is given by
125 + �d MB. The descriptors of the �les stored in the �le-cache may
themselves be cached in a separate cache for quick access, and the space
occupied by these is again linearly proportional to the number of �les,
and hence approximately linearly proportional to �d. Assuming an ad-
ditional 53 MB for SPECweb99 application, O/S, and required utilities,
and an additional 200 KB/connection for miscellaneous bu�ers and han-
dles, the minimummemory required as a function of design throughput,
denoted Mem(�d), can be approximated as:

Mem(�d) = 178 + 1:06�d (1.3)

2In practice, the achievable ops/sec per connection is more like 3.2 or less. In this analysis,
we ignore this small di�erence.

6

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

F
ile

 S
et

 S
iz

e(
G

B
yt

e)

Target Throughput(K Ops/sec)

Figure 1.1 Target Throughput vs. File Set Size

Fig. 1.1 shows this relationship graphically. It is seen that 4 GB
memory (the maximum directly addressable on a 32-bit machine) can
support only about 3800 ops/sec with full caching. Even with a trans-
action path length (i.e., instructions executed per operation) of twice as
much as that of SPECweb96, this performance level is easily exceeded by
current generation of SMP (symmetric multiprocessor) systems. Thus,
SPECweb99 memory requirements increase fast enough that full caching
is not a cost-e�ective option.

Before closing this section, we briey address the issue of how repre-
sentative SPECweb99 is of actual web-servers. In the Internet arena, it
is almost a given that there is no such thing as a \typical" workload or
con�guration. For example, the percentage of dynamic content on a web
server is known to vary from almost zero to 100%. Similarly, the sizes
and nature of documents served by a web server covers a very wide range
from small text �les to huge video libraries. In this sense, SPECweb99,
or for that matter any other benchmark, could not capture anything
about the real world. Yet, SPECweb99 is a valuable benchmark because
it includes characteristics found in many large web-servers, such as Zipf
(or near-Zipf) distribution of �le accesses, strong preference for smaller
�les, a signi�cant percentage of dynamic web pages, pages served with
advertisements, large number of documents, most of which are rarely ac-
cessed but some are accessed frequently, etc. In this sense, SPECweb99
is quite realistic (much more so than SPECweb96), and the analysis of
its characteristics and optimizations for it should be valuable for real
servers as well. However, the nature of the tra�c driving a SPECweb99
server does not appear to have been given much attention; for example,
there is nothing about the client behavior that would induce properties

Performance Impact of Uncached File Accesses in SPECweb99 7

that are commonly observed in real tra�c, e.g., long-range dependence
or multifractal behavior [6].

3. MODELING OF FILE CACHING

PERFORMANCE

In order to study �le-caching properties of SPECweb99, it is essen-
tial to build an accurate and tractable model which can be studied
as a function of available memory and various target throughput lev-
els. Unfortunately, an exact model becomes intractable because of the
multiplicity of �le sizes and a di�erent access frequency for every �le of
every directory. Therefore, we propose here a simple approximate model
that provides reasonably accurate results when the �le-cache hit ratio is
rather high (the expected case in practice, and certainly in benchmark-
ing runs).

We assume that the �le-cache uses the LRU (least-recently used) pol-
icy for �le replacement. It is well-known that LRU does not work quite
as well as some other more sophisticated algorithms in the context of
web proxy caching (and hence for �le-caching in a web proxy environ-
ment)[1]. However, given the SPECweb99 environment where every �le
has a �xed access frequency, LRU should work fairly well except when
the available �le-cache is very small.

Consider a SPECweb99 setup with Nd directories, Nc = 4 classes,
and Ns = 9 �les per class. A �le can be uniquely identi�ed by an integer
in the range 1::Ns. For convenience, we let is refer to the popularity
index of the �le (rather than the �le number). Also, let qic denote the
probability that a class ic �le is accessed. Then, the �le access frequency
is given by:

A(id; ic; is) =
qic

C id is
where C =

NdX
i=1

1

i

NsX
j=1

1

j
(1.4)

Suppose that we arrange all �les in the increasing order of access fre-
quency. We henceforth denote the rank of a �le f in this total order
as rf . Then, under LRU discipline, the probability of �nding the �le
cached is proportional to the access frequency. In other words, given
a �le-cache size F , one can determine the rank rmax such that all �les
with rank � rmax can �t the cache. The analysis here is based on the
following view of caching: all �les with rank � rmax normally reside
in the cache and can be accessed without disk I/O; however, access to
other �les requires replacing some of these �les temporarily and restor-
ing them later. In this view, it is convenient to label �les with rank
� rmax as \cached" and all others as \uncached". The \uncached �les"
essentially \pollute" the cache whenever they are accessed, and we shall
estimate the e�ect of this pollution. The total access probability of
cached �les, denoted �f , is given by

�f =

rmaxX
r=1

A(r) (1.5)

8

where A(r) is the access probability of �le with rank r. Let �f denote
the �le-count based �le-cache hit ratio. If uncached �les are of the same
size as cached �les, we would have �f = �f . However, because of the
preference for smaller �les, uncached �les are larger, and hence �f < �f .
Here we relate �f to �f approximately. For this, we �rst compute the
average size of cached and uncached �les in units of bytes, denoted Q0

cb

and Q0

ub respectively. Let S(r) denote the size of the �le with rank r.
Then,

Q0

cb =

rmaxX
r=1

A(r)S(r)
.
�f (1.6)

Q0

ub =
X

r>rmax

A(r)S(r)
.
(1� �f) (1.7)

Let � = Q0

ub=Q
0

cb, which can be interpreted as the average number of
cached �le replacements for each reference to an uncached �le. Let
denote the probability of expulsion of cached �les due to references to
uncached �les of larger sizes. Then,

�f = �f � (1� �f) (1.8)

In estimating , we assume that the �le hit-ratio is high enough such
that the system e�ectively comes to a steady state between successive
accesses to uncached �les. In this case, the probability is related to
(� � 1), the excess replacements to accommodate the larger uncached
�les. However, does not equal (� � 1) because the replaced �les are
not all needed immediately after access to the uncached �le. Thus,
 = (��1)fr where fr is the probability that the replaced �le is needed
shortly after. fr depends on the access pattern and was estimated as
0.333 for SPECweb99 under LRU replacement scheme based on the
simulation results.

Based on this estimate, we can now obtain a more re�ned estimates
of average sizes of cached and uncached �les, denoted Qcb and Qub

respectively. These are given by

Qcb =

rmaxX
r=1

A(r)S(r)
.
�f (1.9)

Qub =
X

r>rmax

A(r)S(r)
.
(1� �f) (1.10)

In addition to �le-count based hit ratio, it is also important to estimate
the byte-count based cache hit ratio, denoted �b, which gives the fraction
of bytes that are delivered out of the �le-cache. Let �S(r) = 14:73 KB
denote the overall average access size. Obviously,

�b = Qcb

.
�S(r) (1.11)

From a disk I/O perspective, the number of IOs per transaction is usu-
ally a lot more important than the number of bytes transferred. We

Performance Impact of Uncached File Accesses in SPECweb99 9

conservatively assume that a single IO can transfer up to B = 16 KB of
sequential data (some IO systems can transfer up to 32 KB of data in
one IO). The average number of IOs per transaction, denoted QuB, is
thus given by

QuB =
X

r>rmax

A(r)

�
S(r)

B

�.
(1� �f) (1.12)

By multiplying Qub and QuB by the throughput, we obtain the disk IO
rate in bytes/sec and IOs/sec, respectively.

Another issue of interest is the impact of disk I/O on the throughput.
Because of the lack of well-tuned measurement results at this time, we
estimate this impact only relative to what we call maximum achievable

or target throughput, i.e., the throughput that can be achieved if the
entire �le-set was contained in the �le-cache. To approach this issue, we
consider the \path length" L, i.e., the number of instructions executed
per transaction. For the static part of the workload, the path length in
the fully cached case should be similar to that for SPECweb96 because
of almost identical average access size. In fact, because a new connection
is not needed in SPECweb99 for each transaction, the path length could
even be smaller. From these considerations, an optimized \web-cache"
type of solution could deliver path lengths of 50,000 instructions/op
or lower.3 However, depending on the implementation details of the
dynamic part, the path length could increase substantially. We believe
that it is possible to approach overall path lengths of as little as 100,000
instructions/op with optimized software, e.g., ISAPI (Internet Service
Application Programming Interface) [4] instead of CGI. Let L0 denote
this path-length estimate assuming full caching of the �les.

Now, if I/O is needed, this path length will increase by two fac-
tors: (a) disk read path length multiplied by average number of IOs per
transaction, and (b) �le-cache management path length because of the
need for making replacements. Let �D and �F denote, respectively, disk
read and �le cache management path lengths. Based on available mea-
surements on Intel/NT platforms, we assume that both are �F = 6250
instructions and �D = 12; 500 instructions. Thus, the actual path length
is given by:

L = L0 + (1 � �f)(�F +QuB�D) (1.13)

It follows that the actual throughput T can be related to the tar-
get throughput T0 as T = T0(L0=L). It may be noted here that an
optimistic estimate of L0 is the most conservative from the achieved
throughput perspective. Thus, if the systems are not able to achieve
a path length of 100,000 instructions/op (which is likely in the short
run based on the current measurements), the relative impact of I/O on
throughput will be even smaller.

3The idea of a web-cache for static workloads such as SPECweb96 is to minimize context
switches and system calls. For example, Microsoft's solution attempts to do everything in
the user-space.

10

Target File-set cache cached �le hit Disk I/O E�ec. ana
tput size size frac ratio /sec in tput or

(ops/s) (MB) (MB) (%) (%) KIOs MB (ops/s) sim

2500 2688 67.2 2.50 0.744 1.54 17.1 2312 S
0.765 1.97 20.2 2229 A

2500 2688 134.4 5.00 0.849 1.06 12.7 2378 S
0.857 1.25 13.9 2324 A

2500 2688 268.8 10.0 0.925 0.69 9.0 2432 S
0.925 0.69 8.5 2401 A

10000 10367 259.2 2.50 0.783 5.25 58.8 9330 S
0.807 6.53 67.9 9087 A

10000 10367 518.3 5.00 0.870 3.70 44.6 9551 S
0.883 4.15 46.7 9410 A

10000 10367 1037. 10.0 0.933 2.41 31.5 9737 S
0.938 2.32 28.6 9669 A

40000 41084 1027. 2.50 0.810 18.84 213.0 37154 S
0.838 22.14 232.8 36865 A

40000 41084 2054. 5.00 0.885 13.18 158.7 38054 S
0.901 14.09 159.9 37987 A

40000 41084 4108. 10.0 0.941 8.42 109.4 39097 S
0.948 7.84 97.5 38868 A

Table 1.1 Comparison between Simulation and Analytic Results

Performance Impact of Uncached File Accesses in SPECweb99 11

We validated the model by a simulation that emulates SPECweb99
static workload along with an LRU �le-cache and a server represented
by a single server queuing station. Table 1.1 shows a comparison of
analytic and simulation results for a few cases. In particular, it shows
the comparison for 3 target throughput levels, namely 2500 ops/sec,
10,000 ops/sec, and 40,000 ops/sec. In each case, we consider 2.5%,
5.0% and 10.0% of the �le-set to be cached, thereby resulting in 9 cases.
For each such case, the �rst row shows the simulation results, whereas
the second row shows the analytic results. It can be seen that analytic
results overestimate the cache hit ratios somewhat in all cases. (This
is to be expected since a real LRU scheme does not result in a clear
distinction between so called cached and uncached �les.) However, disk
I/O and achievable throughput are pessimistic for small caching levels
and optimistic for high caching levels. In all cases, the accuracy is good
enough to use the model for investigating �le-caching behavior further.

4. RESULTS

0

20

40

60

80

100

120

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

K
IO

/s
ec

P(in Cache)

2500 OPS
5000 OPS

10000 OPS
20000 OPS
40000 OPS
80000 OPS

Figure 1.2 Cache hit ratio and KIO/sec

Based on the formulations provided in section 3., it is possible to
estimate the amount of disk I/O operations when �le cache size is not
large enough to hold entire �le set. Fig. 1.2 and Fig. 1.3 illustrate the
relationship between the two factors: Cache hit ratio vs. amount of
disk I/O for a set of target throughputs ranging from 2500 ops/sec to
80,000 ops/sec. The X-axis in both �gures denotes cache hit ratio, i.e.,
the probability that the requested �le is in the �le cache. Note that the
amount of disk I/O decreases almost linearly with the increase in cache
hit ratio until cache hit ratio reaches about 95%.

Evidently, small size �le cache implies more I/O operations, which
means that a higher performance I/O subsystem is required to keep the
CPU busy. Figs. 1.4 and 1.5 illustrate the IO system requirements as

12

0

100

200

300

400

500

600

700

800

900

1000

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

M
B

yt
e/

se
c

P(in Cache)

2500 OPS
5000 OPS

10000 OPS
20000 OPS
40000 OPS
80000 OPS

Figure 1.3 Cache hit ratio and MByte/sec

0

20

40

60

80

100

120

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

K
IO

/s
ec

(File Cache Size)/(File Set Size)

2500 OPS
5000 OPS

10000 OPS
20000 OPS
40000 OPS
80000 OPS

Figure 1.4 Fraction cached vs. KIO/sec

Performance Impact of Uncached File Accesses in SPECweb99 13

0

100

200

300

400

500

600

700

800

900

1000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
B

yt
e/

se
c

(File Cache Size)/(File Set Size)

2500 OPS
5000 OPS

10000 OPS
20000 OPS

40000 OPS
80000 OPS

Figure 1.5 Fraction cached vs. MByte/sec

a function of cached fraction (i.e., ratio of �le cache size and the �le
set size). This is done for a number of target throughput levels. The
�rst graph shows the requirements in Kilo-IOs/sec, whereas the second
one shows it in terms MB/sec. (Generally, IOs/sec is a much more
relevant capacity metric for an IO subsystem than MB/sec.) Both of
these graphs imply that beyond a certain point (about 10-15% caching
level), adding memory does not reduce disk IO signi�cantly, and a very
large �le-cache may not be worthwhile. It may also be noted that the
curves become more skewed as the target throughput increases.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
(in

 C
ac

he
)

(File Cache Size)/(File Set Size)

2500 OPS
5000 OPS

10000 OPS
20000 OPS
40000 OPS
80000 OPS

Figure 1.6 Cache hit ratio vs. Fraction cached

Fig. 1.6 shows the relationship between the cache hit probability as
a function of cached fraction for a number of target throughput levels.

14

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0 10 20 30 40 50 60 70 80

F
ile

 C
ac

he
 S

iz
e/

F
ile

 S
et

 S
iz

e

Target Throughput: K Ops/sec

95% Achievable Throughput

Figure 1.7 Target Throughput vs. Fraction cached

There are a number of important observations in the graph. The �rst
issue is the e�ect of the skewed access pattern. Due to highly skewed ac-
cess pattern, it is possible to achieve high cache hit ratio with a small �le
cache, e.g. Cache hit ratio is greater than 90% when the �le cache size is
approximately 10% of the �le set size. Furthermore, as target through-
put increases, the access pattern gets more skewed. Fig. 1.7 illustrates
this skewness by plotting the caching fraction needed to achieve a �xed
95% of the target throughput, as a function of the target throughput.
It is seen that the cached fraction for achieving 95% of target through-
put is less than 9% in all cases and decreases with target ops/sec. In
particular, at 80,000 ops/sec, only 4.5% of the entire �le set needs to be
cached to achieve 95% throughput.

Fig. 1.8 shows the �le cache size needed to achieve a given fraction
of the target throughput. The important observation from this graph is
that as the achievable throughput becomes closer the target throughput,
the �le cache size increases very rapidly. For example, with a target
throughput of 40,000 ops/sec, we can achieve 39,400 Ops/sec (98.5% of
target throughput) with a �le cache size of only 8.4 GBytes, which is
only 20% of the total �le set size.

The results above also indicate an interesting tradeo� between mem-
ory and I/O. Suppose that we want to achieve a throughput of T0
ops/sec. We can achieve this in two ways (a) design a server with
target throughput of, say, 1:02 T0 and lots of memory, or (b) design a
server with target throughput of, say, 1:1 T0, with a small amount of
memory but with a much better I/O subsystem and a somewhat faster
CPU. This tradeo� may be particularly relevant for large servers in
view of the current limitation of 4 GB of virtual address space on 32-
bit machines. We note in this regard that while some 32-bit machines
can support more than 4 GB physical memory (e.g., Intel processors
that have 36-bits for address lines), accessing large memory regions is

Performance Impact of Uncached File Accesses in SPECweb99 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

(F
ile

 C
ac

he
 S

iz
e)

/(
F

ile
 S

et
 S

iz
e)

Achievable Tput/Target Tput

2500 OPS
5000 OPS

10000 OPS
20000 OPS
40000 OPS
80000 OPS

Figure 1.8 Frac of throughput achieved vs. Fraction cached

not very e�cient and requires software changes. At the same time, the
CPU performance of 32-bit machines is expected to continue climbing
and at least remain competitive with 64-bit machines.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we examine the characteristics of SPECweb99 bench-
mark with respect to its �le-caching properties. We �nd that although
the memory requirements of SPECweb99 increases quite rapidly with
the target throughput, the highly skewed access pattern (Zipf distribu-
tion for access across directories and across �les in a class) means that
a relatively small amount of memory can provide a very high cache hit
ratio and thereby near maximal throughput. In particular, 95% of the
target throughput can be achieved by caching less than 10% of the to-
tal �le size. Further increase in caching fraction increases throughput
only very marginally and may not be cost e�ective. Thus, the 4 GB
memory limitation for current 32-bit machines should not pose a signif-
icant performance hurdle for high-end web-servers that run workloads
not too dissimilar from SPECweb99. It is to be noted in this regard
that SPECweb99 was de�ned based on data from a number of major
web-sites, and thus the results for SPECweb99 are of signi�cance to real
web servers in general, even if no real web server may behave exactly
like a SPECweb99 server. In particular, the Zipf distribution for �le
accesses in a web environment is well-established [2], and so is the fact
that large web servers typically host a very large number of documents,
most of which are rarely accessed.

A further lesson from this work is that instead of using a lot of mem-
ory on the web-server and thereby increasing per op cost, it might be
preferable to keep the amount of memory moderate and instead con-
centrate on tuning the I/O subsystem for optimum performance. For

16

example, reduction in disk I/O path length by using larger transfer
sizes or via more clever arrangement of �le-set on the disk would di-
rectly contribute to the throughput. Similarly, a more e�cient �le-cache
management would also contribute to the throughput. In this context,
several well-known techniques can be examined. As stated earlier, a
LRU �le-replacement is not necessarily optimal, and other replacement
policies should be evaluated. Similarly, operating system control of �le-
caching (and indeed O/S controlled I/O) are generally expensive, and
corresponding user-level schemes should help signi�cantly [3].

Future work on the topic includes validation of the analytic/simulation
results against actual measurements. We already have a measurement
setup available, however, a signi�cant amount of tuning is needed in or-
der to obtain good performance. The major stumbling block is the use
of CGI for the dynamic content, which is extremely ine�cient. As the
benchmark implementation matures, especially by using ISAPI imple-
mentations instead of CGI, the focus should shift to extracting better
e�ciencies out of the I/O subsystem. We are also in the process of
building a detailed model of the benchmark in order to enable perfor-
mance projections as a function of various platform parameters (CPU
speed, memory pipeline characteristics, CPU cache size and latency,
etc.) along the lines of a similar model for SPECweb96 [5]. A validated,
simple analytic model of �le-caching is indispensable in this endeavor
since the actual simulation of �le-cache is very expensive.

It was mentioned in section 1. that POSTs could have a substantial
inuence on �le-cache performance and disk I/O. A major remaining
task is to understand POSTlog (including its e�cient implementation)
and modeling of �le-caching and disk I/O impacts of it.

One issue that has not been addressed in this paper is the e�ect
of multiple server threads on the �le-caching behavior. Our analysis
implicitly assumed a single-thread case. With multiple threads, �le
cache performance could be worse; it would be interesting to come up
with a �le-caching model that accounts for this and validate it against
measurements.

References

[1] M. Arlitt, R. Friedrich, and Tai Jin, \Performance Evaluation of
Web Proxy Cache Replacement Policies", Technical Report, HP Labs,
1998.

[2] M.E. Crovella and A. Bestavros, \Explaining World-wide web self-
similarity", Technical Report, Dept of Computer Science, Boston
University, Oct 1995.

[3] D. Dunning, G. Regnier, et. al., \The virtual interface architecture:
a protected, zero copy user-level interface to networks", IEEE Micro,
March 1998, pp66-76.

[4] \The ISAPI developers site" available at www.genusa.com/isapi.

[5] K. Kant, \A Server Performance Model for Static Web Workloads",
submitted for publication.

[6] K. Kant, \On Aggregate Tra�c Generation with Multifractal Prop-
erties", to appear in GLOBECOM 99.

[7] \An explanation of the SPECweb96 benchmark", available at SPEC
web site www.specbench.org/osg/web96.

[8] \An explanation of the SPECweb99 benchmark", available at SPEC
web site www.specbench.org/osg/web99.

17

