The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

GEIST: A Generator for E--Commerce & Internet Server Traffic
A User Manual

K. Kant, V. Tewari & R. Iyer
Intel Corporation

License/Copyright Information

Please note that all the source files provided along with this user manual in this package are subject to the
following BSD-style license.

Copyright (¢) 2002, Intel Corporation
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials provided with the
distribution. Neither the name of the Intel Corporation nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS
IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBU-
TORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUP-
TION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Please also note that:

e This product includes OpenSSL under the licensing conditions given below.

e This product also includes “ranlib” random number library distributed under GNU public license
and available from http://netlib.bell-labs.com /netlib /random/.

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

OpenSSL LICENSE ISSUES

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL License
and the original SSLeay license apply to the toolkit. See below for the actual license texts.
Actually both licenses are BSD-style Open Source licenses. In case of any license issues related

to OpenSSL please contact openssl-core@openssl.org.

0.0.1 OpenSSL License

Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions

and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. All advertising materials mentioning features or use of this software must display the follow-
ing acknowledgment: ”This product includes software developed by the OpenSSL Project
for use in the OpenSSL Toolkit. (http://www.openssl.org/)”

4. The names ”OpenSSL Toolkit” and ”OpenSSL Project” must not be used to endorse or
promote products derived from this software without prior written permission. For written

permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called ”OpenSSL” nor may ”OpenSSL”

appear in their names without prior written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment: ”This
product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/)”

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT “AS IS” AND ANY
EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License

Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The
implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions
are aheared to. The following conditions apply to all code found in this distribution, be it the
RC4, RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with
this distribution is covered by the same copyright terms except that the holder is Tim Hudson
(tjh@cryptsoft.com).

Copyright remains Eric Young’s, and as such any Copyright notices in the code are not to
be removed. If this package is used in a product, Eric Young should be given attribution as the
author of the parts of the library used. This can be in the form of a textual message at program

startup or in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and

the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. All advertising materials mentioning features or use of this software must display the fol-

lowing acknowledgement: ”This product includes cryptographic software written by Eric

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

Young (eay@cryptsoft.com)” The word ’cryptographic’ can be left out if the rouines from
the library being used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory
(application code) you must include an acknowledgement: ”This product includes software

written by Tim Hudson (tjh@cryptsoft.com)”

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTI-
TUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS IN-
TERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The licence and distribution terms for any publically available version or derivative of this code
cannot be changed. i.e. this code cannot simply be copied and put under another distribution
licence [including the GNU Public Licence.]

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

Section(s) on GEIST Overview

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

1 Introduction

The work on Geist was motivated by the need to understand the implications of web traffic char-
acteristics on the architectural aspects of a web/e-commerce server. This requires generation of
aggregate Internet traffic from a server’s perspective without having to explicitly emulate network
components or protocols. This server-centric focus also means that client-level aspects of the traf-
fic are relevant only to the extent they affect the aggregate traffic. In particular, the detailed client
behavior (e.g., time between mouse clicks, number of links per page, probability of following a
link, etc.) are not directly relevant. Furthermore, lab testing environment often requires that the
servers be driven to their capacity (and in fact beyond the capacity into overload region). This
requires the capability to generate heavy traffic (e.g., more than 10K requests per second). It is
worth noting in this regard that the traditional socket interface makes overloading web-servers
quite difficult. Finally, the increasing dynamic content of web pages makes generation of realis-
tic transactional characteristics particularly challenging, especially in e-commerce environments.

Geist, has been designed to deal with these and other important issues.

Internet traffic is known to show complex temporal characteristics including long-range depen-
dence, traffic irregularities at intermediate time scales, and nonstationarity. Further complexity
arises in the transactional composition of the requests which not only retrieve stored “files” but
also often dynamically construct web pages by running scripts, perhaps embedded with queries
to backend databases. Thus the traffic generator should be able to control both temporal and
transactional properties of the traffic. In an e-commerce environment, certain transactions may be
secure, and such transactions are comparatively very expensive on both client and server ends [5].

Geist, unlike many other traffic generators can generate mixed secure/nonsecure traffic.

2 Components of GEIST

Generation of aggregate traffic with complex characteristics is often computationally intensive,
which makes it difficult to ensure that a request is actually generated very close to the intended
time. Geist addresses this issue by splitting the generation into two steps referred to as trace
generation and traffic generation respectively. Trace generation handles all the complexities of
computing the actual time and parameters for the requests, whereas the traffic generation step
simply reads the trace and issues the requests. The added advantage of this approach is that the
trace could very well have been derived from HTTP logs from a live site. The Geist suite plans
to provide a set of perl scripts to convert HT'TP logs into the same format as generated by the

trace generator.

The format of the trace is as follows:
Reqgld ReqTime ReqgSize ReqType ReqCmd ReqPathFile

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

where each field can be described as follows:

Reqld is the sequence ID for the transaction.

ReqTime is the time (in secs) at which the request should be made.

ReqSize is the size of the request packet.

ReqType used to denote directives for the request (i.e. secure, non-secure, no-cache option, etc)
ReqCmd is the HTTP transaction type (for e.g. GET).

ReqPathFile is the filename (inlcuding path in some cases) to be accessed at the server

More details on the generation of a trace with appropriate characteristics can be found in

subsequent sections.

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

Section(s) on GEIST’s Trace Generator

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

3 Trace Generator Statements

The trace generator takes an input file with extension “.inp” and generates one or more output files
depending on the action requested. The input file may contain a series of variable declarations,
assignments, print statements, “GO” command, or action type specifiers. These are explained
in the following subsections. All statements are terminated by a “”. A statement may extend
over multiple lines; however, any line breaks must occur after a delimitor (a comma, arithmetic
operator, assignment operator, etc.). Multiple statements can appear in a line. Note that the
program reads statements one line at a time; thus, a very long statement contained entirely on
one line may exceed the line-buffer size (“line_length” parameter defined in misc.h with a default
value of 480 chars) and result in a barrage of error messages. To avoid this, very long statements
should be split on multiple lines. Comments can be put anywhere by using the character “#”.

Everything after “#” until the end of the line is ignored.

3.1 Variable Declarations

Geist provides a number of predefined variables to control various temporal and transactional
properties of the traffic, properties of the web-pages (or files) accessed by the request, and for-
mat/type of output generated. These variables have known types and should not be declared.
Geist also allows C-like declarations of user defined variables; these variables are generally needed
to do some temporary computations. (Only scalars and 1-D arrays can be defined this way).
Declarations can appear anywhere in the program, and will remain defined until redefined or
until the end of program. (Redefinition is allowed, but results in a warning message.) The array
dimension can be declared using arbitrary (integer) experssions involving constants, predefined
variables or already declared and assigned user defined variables. Geist recognizes 4 basic types

in the declarations:

integer Same as C int.

double Same as C double.

boolean An enumerated type with values “false” and “true”.

string A char array with a maximum size as defined by the parameter “name_len” in the module
misc.h (default 80 chars).

distribution A structure to receive distributional values (Explicitly declared distribution vari-

ables not fully implemented yet).
The variables declarations use a C-like syntax, as in:

integer count, length; double prob[num_classes * sizes_per_cl]; string cgi_scripts[4];

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

where “num_classes” and “sizes_per_cl” are predefined variables (explained later).

3.2 Assignment Statements

Assignments to various variables can be made in any arbitrary order (except for the assignment to
the 4 structural parameters that must be done before the first GO statement as already explained
above). The RHS of an assignment could be a complex expression including built-in functions
described below. Limited forms of array and distributional assignments are also permitted. The
array indices could themselves be integer valued expressions. Geist follows C-like type rules in
expression evaluation and assignments. For example, a/b is considered to be an integer division if
both a and b are integer and a real division if either of them is a double type. Similarly, assignment
of an integer value to double goes without incident, but assignment of double to integer will result

in a warning (and truncation).

The basic arithmetic operators are +, -, *, / (both integer and real) and have the usual

precedence rules. Real numbers can be given in the usual F or E notation. A unary 7+ is allowed

” A

only following the letter ”e” or ”E” in the E notation, but unary “-”

works as expected. Currently,
relational and boolean operators are not supported because their usefulness was unclear. However,
they are trivial to add and may be supported in later versions. A number of other operators and

functions are also supported as listed below:

% (modulus operator) a%b gives remainder of a divided by b. Here b must be an integer but

a can be real.

A (exponentiation) a Ab gives a raised to the power b. If both a and b are integers, the result is
an integer, else it is double. As expected, “A” has higher precedence than the multiplicative

operators.
\abs (absolute value); the argument can be integer or double.
\int (floor of a double value),
\real (conversion from integer to double),
\log (natural logarithm),
\exp (exponential function),
\sqrt (square root),
\sin (trignometric sine),

\asin (trignometric inverse sine),

10

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

\tan (trignometric tangent),
\atan (trignometric inverse tangent),
\fact (factorial of an integer valued expression),

\choose (x \choose y where x and y are integers),

For scalars, the assignment statement syntax is same as in C. In addition, restricted array
assignments are allowed and have some unique features. The following are some examples of valid

assignment statements (assuming that appropriate variable declarations exist):

num_directories = \int(10 * \sqrt(throughput/5));
asp-_file_names = ”search”, ”order”, ”status”, ”payment”;
test_arrayl = a, 3.279e-4, a+b/2;

test_array2 = test_arrayl*a/b;

The first example shows assignment to a scalar integer. Irrespective of the type of variable
“throughput”, the sqrt function will yield a double value; thus the expression value must be con-
verted to integer using the \int() function before assigment to the integer valued “num_directories”.
The second assignment shows initialization of an array of strings. The last two assignments show
two ways of doing array assignments. The assignment to “test_arrayl” merely specifies the list
of values (or expressions); in this case, the number of list elements must match the dimension
of the array, else an error message will be generated. In the last assignement, every element of
“test_arrayl” will be multiplied by a/b and the result assigned to the corresponding element of
“test_array2”. Again, the dimensions of the two arrays must match. The array to array assign-
ment as supported by Geist is somewhat restricted as follows: (a) only one array can appear on

the RHS, and (b) this array must be the very first operand in the expression.

In order to conveniently specify a list of values for array assignments, Geist allows a range
operator “..” in expressions. For double values, the range expression is X .. Y : N where X
and Y are arbitrary expressions and N is an integer value expression. Let z, y, and n denote,
respectively, the values of these expressions. Then the range expression evaluates to n equi-spaced
values starting at = and ending at y. That is, the values are z,z + a,...,z + (n — 1)a where
a=(y—xz)/(n—1). Here n is required to be at least 2. Note that z and y could be identical, in
which case the range contains repetition of the same value. For integers, only a simplified form of
the range, expressed as X .. Y is allowed, and it refers to all integers in the given range. Integer
ranges can also be used on the LHS to specify the subset of an array to be assigned. For example,

the following specifies a discrete probability mass function over the integers 1..9:

num = 9; prob[l.num| = 0.12, 0.18 .. 0.04 : (num-1);
prob[num+1 .. size] = 0;

11

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

where the last statement introduces another feature of assignments, that is, if the RHS is a scalar

and the LHS an array, the same scalar value is assigned to all the elements.

3.3 Print Command

This command simply prints out the value of the given variable(s). The syntax is “print” followed
by list of comma-separated variables. All variables are printed in the format <name> = <value>
separated by commas. All variables included in a print statement are printed on the same line,
however, each print statement starts printing on a new line. Note that the arguments to print
statement must be variables, not expressions. However, complete arrays or their subranges can be
printed. For example, if X is an array “print X[3..7]” will print elements X[3]..X[7]. The indices
in the range can, of course, be arbitrary integer valued expressions. Geist also provides a special

32

form of print statement with the syntax “print *”. This will print out current values of all the

variables.

As indicated earlier, if one of the variables in the print list is a time-dependent variable, the
print statement will also be executed at the end of every time-slot. This provides an easy way of

generating a trace of time-dependent variables.

3.4 Program Execution

The trace input file does not provide any general program control statements (if-then-else, do-
while, etc.) There is only one program control statements in Geist: a “GO” statement. The first
appearance of GO statement allocates storage for all predefined arrays. This storage allocation is

controlled by the following structural parameters:

num _classes Number of file classes in the model.

sizes_per_cl No of file sizes per class.

num_asp _scripts No. of ASP scripts invoked.

markov_chain_order Order of the Markov chain describing transactions.

arr_stat_buckets Number of buckets for reporting arrival process statistics.

Assignments of values to these parameters must be done before the first GO statement, else
strange things might happen. Note that Geist does assign default values to these (and most
other) parameters; however, if the default values don’t agree with what you intended, the result
could be segmentation fault (arrays too small), arbitrary values (arrays too large), probabilities

not summing to 1.0, etc.

12

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

The subsequent occurrences of “GO” statement are a signal to execute the program with
current input parameter values. After execution, the control returns to the next statement in the

input file, so it is possible to keep modifying the input parameters and running the program.

The GO statement may have 0, 1 or 2 parameters. Accordingly, the syntax of the GO statement

is as follows:

GO; # No parameters
GO(<additional run_time>); # One parameter
GO(<additional run_time>, <status>); # Two parameters

The first parameter specifies the additional steady state run time for the program in seconds. If
the GO statement is given without any parameters, the previous value of the additional run-time
applies. Thus, for example, if we have GO(1000) followed by perhaps some parameter changes
and simply a GO, the program will run again for 1000 seconds. Note in this regard that if the
very first GO statement (the one that allocates arrays) contains an argument, the run-time will

still be set to this value so that subsequent GO statements don’t necessarily need the argument.

Between successive GO statements, the user would typically want to change certain param-
eters. Some of these changes could be trivial (e.g., changing some output switches in order
to get more or less detailed output) and it makes sense to simply continue the traffic genera-
tion/simulation. In other cases, the change could be substantial (e.g., change to the traffic or
file access characteristics), in which case, a reset and reinitialization is called for. The second
parameter of GO statement indicates this. The second argument is an enumerated type which

can take the following values:

end _simul End the program immediately. This is just for convenience during debugging — this
would make the program ignore the rest of the input and exit. Obviously, the first argument

is irrelevant in this case.
resume_simul Resume simulation w/o any state or statistics resetting.

stat_reset Reset the accumulated statistics and then resume. All state variables remain un-
touched. This is basically what happens during warmup time; however, on the second GO
statement, Geist automatically performs the warmup so an explicit use of this option is not

needed first time around.

queue_reset Reset statistics and “queue” state before resume. Here “queue” refers to the built-
in capability of using the generated traffic for a queuing system simulation (explained later).
If no such simulation is being performed, this option is equivalent to “stat_reset”. Note that
there may be a need to do a warmpup of the queue following a reset; this needs to be done

explicitly.

13

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

full reset This makes the entire program start over and reinitialize everything. This choice must
be used if any of the structural parameters is changed. A warmup may be needed following

the reset.
Some of the other program control variables are as follows:

transient_period Warmup period in seconds to bring the traffic generator to steady state. (This

is not a warmup period for system queue or the file-cache.)

reporting time Time-period in seconds for reporting statistics. This is useful to report statistics

at intermediate points.
action_type Specifies the action to be performed.

window _size_mult Number of slots over which arrivals are accumulated for generating the ar-

rival time-series.

Note that in order to ensure that the steady-state period starts at simulation time 0, the
simulation time is set to negative <warmup_time>> initially. (Thus if you enable statistics printing

during warmup period, you would see negative times!)

3.5 Time Function and Load Control

In addition to the functions covered above, Geist provides one more function, called \time.
\time(x) gives the time of an event as specified by the parameter = which can take the following

values:

t_current Starting time of the current time-slot in the simulation.
t_ovl start Time of the last start of the overload period.
t_ovl_end Time of the end of last overload period.

t_stat_reset Time of last statistics reset (obtained from the second argument of the last GO

statement with values given as stat_reset, queue_reset or full reset).

t_full reset Time of last full reset (obtained from the second argument of the last GO statement

that specifies a full reset).

One frequent use of this function is to vary the system load as a function of time. Almost
any variable concerned with run-time behavior can be made time-dependent by using the \time
function directly or indirectly. For example, the average arrival rate can be made to vary in a

sinusoidal manner between 5/sec and 15/sec by specifying:

14

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

avg_arrival rate = 10.0 *(1.0 + 0.5*\sin(\time(current)))

Note that if a variable’s value is time-dependent, its use in another statement makes that
statement also time-dependent. Geist handles these dependencies correctly, however, it could
lead to some surprising side effects. For example, the statement “print avg_arrival_rate” following
the above assignment will print avg_arrival rate every clock tick since this print statement becomes

time-dependent itself.

Geist provides a more explicit way of controlling the load, and the \time function could
be useful in that context as well. Often, it is desired to change the load during certain time
window(s) but keep it normal otherwise. This is usually required for overload studies, where the
load is increased beyond the capacity during a given window and then restored to the normal value
to allow the system to recover. It may be desired to do this several times, and Geist provides
support for it. The variables involved in this specification are as follows: (they all have “ovl” in

their name, which refers to overload; however, the load may never reach into the overload region)

ovl _start_time Starting time of the overload episode.
ovl_on_time Duration of overload on-time (in secs).
ovl_off time Duration of overload off-time (in secs).

ovl_cycles Number of overload on-off cycles (each of duration ovl on_time + ovl_off_time) starting

at time ovl_start_time.

ovl_magnitude Magnitude of the overload relative to the normal load. (As indicated above, this
number could well be < 1.0, in which case we would really have an under-load, instead of

overload).

Without the \time function, only constant overloads can be simulated using the above features.
With the \time function in “ovl_magnitude”, it is possible to generate sawtooth or other interesting
waveforms. The main advantage of doing this for “ovl_magnitude” (instead of “avg_arrival rate”)
is that the effect lasts only during the “overload period” (starting at ovl_start_time and going on

for ovl_cycles).

The use of \time() function in these contexts introduces some complications which we discuss
now. Without the \time() function, it suffices to evaluate the values of all parameters just once
during the initialization. However, the presence of \time() function requires that each time-
dependent expression be stored and re-evaluated at each “tick” during run-time. The efficiency
obviously depends on how a “tick” is defined. It is convenient and quite efficient to consider the
value of “time slot” parameter (say T), as the duration between successive reevaluations of time-
dependent expressions. However, the rather large granularity of “time-slot” parameter introduces

some gotchas. Let K = ovl_start_time and suppose that the overload cycle duration is N slots.

15

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

Assume (as expected) that the time setting is done before the evaluation of any time-dependent
expressions. Now consider the expression (\time(t_current) - \time(t_ovl start)). Obviously, its
value will go from 0 to (N-1)T during the overload cycle. In contrast, if the time were continuous,
the expression value would actually go from 0 to N*T instead. Thus, if it is desired to generate
a sawtooth waveform during the overload period that goes from a load of 1.0 to 2.0, one would

have to write:

ovl_off_time = 0.0;

ovl_magnitude = 1 + (\time(t_current) - \time(t_ovl_start))/(ovl_on_time - time_slot);

The non-intuitive part here is the subtraction of the time slot in the denominator and is a re-
sult of discretized evaluation. Note that similar issues can arise with other expressions such as
\time(t_ovl_end) - \time(t_current). These anomolies must be kept in mind when using timing

expressions.

4 Trace Generator Functionality

The Geist trace generator can do a number of things in addition to generating traffic. These

activities and the related parameters are described in this subsection

4.1 Program actions

The basic functionality is specified by the parameter “action_type” given by the following enu-

merated type {create_fc, gen_req, sim_queue, sim fc}. These functions are as follows:

create_fc Create the file-system on the server to be used by the generated requests. This capa-
bility would be typically used only once and on the server in order to create the necessary
file system. Although any traffic related specification in the input file is irrelevant as far as
file-system creation is concerned, it is highly recommended that the same input file be used
for both file-system creation and traffic generation so that any inconsistencies are avoided.
This capability is better accessed via the -c option on the command line (discussed later),

although both methods are supported.

gen_req Generate requests. This generates the traffic trace and writes it out to the file <in_file>.trc
where <in file> is the root name of the input file. The syntax of each request line is ex-

plained in section 4.3.

sim_queue Simulate server. In this case, the generated traffic is directly fed to a rather trivial
single-server queue model of the server, henceforth called server queue, to distinguish it

from a queue needed to generate the arrival process itself. This is often useful for studying

16

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

the queuing properties of the generated traffic in a very simple setting. The available
distributions can be used for the normalized the service time. The normalization is with
respect to the average arrival rate, which makes the mean of the distribution same as queue
utilization. This is done for convenience: it is much more convenient to say that you
want a target utilization of 70% instead of having to give the precise average service time.
Explicit limit can be specified on the queue length at the server; any overflow arrivals are
simply discarded. The simulation results include blocking probability (percentage of arrivals

dropped), throughput, and mean/std-dev of queue length and response times.

Currently, the target utilization is applied without regard to the additional overhead of
executing the dynamic GET scripts. (Needs fixing). However, the overhead of executing
ASP scripts is specified by the parameter “asp_file rel pl” which gives the relative service
time of dynamic scripts. Using this, the overhead of dynamic scripts is accounted for in

computing the actual service time during the server simulation.

sim_fc Simulate file-cache. This is a somewhat more realistic simulation of the server in that
(a) a LRU file cache is emulated for the requested files, and (b) the request service time
is influenced by the disk and network I/O requirements as well. In this case, only the
average value of the normalized target utilization is used since sample to sample variation

is dependent on the size of the file associated with the request.

As with “sim_queue” option, the overhead associated with dynamic gets is added in exactly

as in the above.

The last three choices above make a progression in the sense that “sim_queue” obviously
subsumes traffic generation, and file-cache modeling subsumes traffic generation and queue simu-
lation. The only exception is that in case of “sim_queue” and “sim_fc”, the traffic trace file is not

generated.

When <action_type>=sim fc, the service time for static GETSs is a function of three relative
path-length parameters: (a) file-cache management path-length 7_fc per file request, (b) disk I/O
path-length 7_d per IO request, and (c) network I/O path-length n_n per packet, where “path-
length” is defined as the number of CPU instructions executed for these operations relative to
those for the entire transaction. The given target utilization U (i.e., the average value of the
specified normalized system service time distribution) is still used to compute the base service
time Sp. In particular, Sy = U/A where X is the average arrival rate. This is used to estimate
processor speed (or instructions/sec) as 1y/Sp. Thus, the actual service time S of a transaction
that requests a file f of length L_f byte is given by:

5 So+mnnx (L_f/L— 1) Sy/n0 file f cached
| S+ (nn* (L_f/L—1)+n.d)* Sp/no file f not cached

17

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

where L is the average file size. Note that if the file cache cannot hold the entire file-set, the

actual server utilization will always be higher than the specified target value.

The variables associated with these options include

qlength_limit Maximum number of requests in the system queue. Any arrivals when the queue

is full are simply dropped.
system _st_parms System queue normalized service time (or utilization) parameters.
max_cached _files Maximum number of files allowed to be cached.

cached file_frac File cache size given as a fraction of the total file-set size. A file is not cached

even if the cache has room if the number of cached files is already at <max_cached_files>.

asp_file_rel pl Relative path-length associated with the execution of ASP scripts (an array of
size <num_asp_scripts>). The path-lengths are relative to the path-length of the entire

transaction for static file access.

disk_io_pl Relative path-length for a single disk I/O operation excluding the file-cache man-
agement. Its default value is 0.125, roughly based on SPECweb99 path-length on an Intel

platform.

fc_mgmnt_pl Relative path-length for retrieval of a file from the file-cache management. Its
default value is 0.0625, roughly based on SPECweb99 path-length on an Intel platform.

ntwk_io_pl Relative path-length for sending/receiving one packet over the network. Its default

value is 0.0760, basically a guess.

4.2 Time series type

Closely associated with “action_type” is the integer variable “time_series_type” which controls
what time series are written out. Currently, the following values are supported. (For clarity, we
show the values as 2-digits in all cases, but since the value type is integer, leading zeros are not

required).

The arrival time-series written out modified according to the parameter “peak_mean_ratio”
which specifies the maximum value as a multiple of the average value (i.e., average number of
arrivals within an arrival counting window). If the number of arrivals within a window exceed
the maximum value so defined, the excess arrivals flow to successive windows. That is, if a large
number of arrivals occurred in a certain window, this window and next several windows will
contain the max arrival count until all the excess arrivals are exhausted. This “saturation” of
arrival process can be effectively disabled by choosing a rather large value for “peak_mean ratio”

(e.g., 10 or more). The time_series_type can take the following values:

18

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

00:

01:

02:

03:

04:

10:

11:

12:

No arrival/queue-length time series generated.

Writes out the saturated arrival counting process in the “short” format to the file <in file>.arr
where <in_file> is the root name of the input file. This process is defined as the no of arrivals
in successive time periods of duration window_size_mult * slot_size. In the “short” format,
each value is separated by spaces with a -1 at the end of the file. This format is usually

appropriate for scaling analysis of the traffic.

Writes out the saturated arrival counting process to the file <in_file>.arr in the “long” format.
In this format, each line contains the pair (<seq-no> <arrival count>). The file is ended

with just a -1 on the last line. This format is suitable for plotting the arrival process.

Very similar to the action under the value “01”, except that the written out time-series is
reported as a fraction of the specified maximum value and is in the range 0.0 to 1.0. This

value can be interpreted as utilization corresponding to the arrival counting process.

Very similar to the action under the value “02”, except that the written out time-series is
reported as a fraction of the maximum, i.e., saturated arrival count divided by the maximum
value. This value can be interpreted as utilization corresponding to the arrival counting

process.

Writes out the queue length process to the file <in file>.qlts where <in_file> is the root
name of the input file. In this case, the action_type must be “sim_queue” or “sim_fc”, else
nothing will happen. The output consists of one line upon each arrival to or departure
from the system queue indicating the event time and the current queue length (with the

arriver/departer taken into account). The syntax is:
<indicator> <event_time> <queue_length>

where the <indicator> is 0 for arrivals and 1 for departures. The file is ended with a -1 on
the last line.

Writes out queue length process (if action_type > gen_req) as well as the arrival counting

process in the “short” format.

Writes out queue length process (if action_type > gen_req) as well as the arrival counting

process in the “long” format.

Because of the number and complexity of the parameters controlling the arrival process, it is

often desirable to monitor the marginal distribution of the generated process and perhaps even

try to adjust it by a trial and error procedure. (No such facility is required for the correlational

properties since these parameters are given as input.) Geist reports the mean and standard

deviation of the inter-arrival time in the output file. Note that for a pure M/G/oco process,

19

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

the interarrival time distribution should ideally be exponential and hence the mean and std_dev
should be identical. In reality, this could be perturbed by three factors: (a) the edge effects of
a small slot-size (e.g., slot_size_mult< 10), (b) inadequate warmup time, and (c) inadequate run
time. Note that for the long-range dependent traffic, an increase in the H parameter lengthens

the acceptable warmup and run times dramatically.

When multifractal properties are introduced in the traffic (i.e., casc_gen_slots> 1), it perturbs
the marginal distribution. In fact, with a large value of casc_gen_ slots, the marginal distribution
of the arrival process (not inter-arrival process) will tend towards log-normal. In Geist context,
the desirable values of casc_gen_slots are generally quite small (64 or less) and it is very difficult to
provide an a priori control over, say, the coefficient of variation of the inter-arrival time. Generally,
the multi-fractal properties will tend to increase the coefficient of variation, but the desirable value

will need to be set by trial and error.

To further assist examination of the arrival process, Geist provides bucketization of the arrival
process. The array “bucket_threholds” provides the bucket boundaries, with the number of buckets
(or the size of the array bucket_threholds) controlled by the parameter arr_stat_buckets. For
example, “bucket_thresholds = {0.85,0.65,0.45,0.0}” as used in section 6.6 specifies that the first
bucket contains all samples that are > 85% of the maximum value, second bucket contains all
samples that are between 65% and 85% of the maximum value, etc.! Note that the last value
specified must necessarily be 0.0, unless you want to leave out some samples. The output file
reports on the percentage of samples that fall in each of these buckets. It is possible to achieve

something close to a target bucketization by modifying the following parameters

slot_size_mult Controls the granularity of the reported samples. For example, if the utilization process is
monitored and slot_size_mult=10, the only utilization factors in the generated time series
will be 10%, 20%, 30%,...

iat_coeff_var Controls the variance of the generated series.
st_decay_rate Controls how much mass goes into the tail.

cascade_gen slots Controls how much the mass distribution over buckets is perturbed (higher values spread

out the mass over high and low ends more).

cascade_gen_parms The variance of this distribution also controls how much the samples are spread out over
the buckets.

Of course, the bucketization will be affected by a host of other parameters as well. For

example, the parameters controlling overload and stationarity properties will obviously affect the

!This bucketization always corresponds to the scaled, saturated process as with time_series_type values of 03
and 04.

20

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

bucketization.

4.3 Trace File Format

With action_type=gen_req, the resulting trace file has a short_format and an long_format. The

syntax for these is as follows:

<short_format> ::= <seq_no> <arrival_time> <request_size> <attribute> <oprn>
[<script>] <file>
<long_format> = <client_id> <user_id> | <short_format>

The long format is used as an intermediate format for splitting the trace among a set of clients.
The eventual output of the trace generator as used by the traffic generator is the short format.
The various parameters in the short format are explained below:

1. Request sequence number (starting at 1)

2. Request time in seconds (steady state period starts at 0)

3. Request size in bytes

4. Request option indicated by an integer. Currently only 3 choices are supported, more could
be added in the future.
0: Non-secure (non-SSL) request and current copy has not expired.
1: Non-secure (non-SSL) request and current copy has expired.

2: Secure (SSL) request (one handshake per request scenario).
5. HTTP operation (currently only GET is supported).
6. URL. The trace generator creates only the following 4 forms of URLs:

(a) Non-SSL request to a file, with syntax /dir_<dir_no>/file_<file_no>

(b) SSL request to a file, which may have a different root directory than normal files (given

by https_root_dir) and thus have some prefix path.
(c) Path to an ASP script (given by asp_root_dir and scrip name) w/o any paramters.

(d) Path to an ASP script with single parameter, which is a file.

Following are some examples of the request lines in short format:

46 35.3072 91 1 GET /dir_002/file_023
112 51.6019 47 0 GET /scripts/work.asp?/dir_023/file_047

21

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

The first example specifies that request no 46 is intended to be generated at absolute time 35.3072
seconds, has a size of 91 bytes and involves retrieving file no 23 from directory 2. The second
request has a similar interpretation except that this is a dynamic get by running a script called
work.asp, which generates some dynamic content that is appended “added” to file 47 in directlry
23 and returned. The intent here is that the script will generate some dynamic content and append
or prepend to the file, however, these are not the only possibilities. In fact, since the semantics
of the ASP file is not specified in Geist, the script is free to do whatever it wishes with the file
argument, including just ignoring it. The only important point to note is that any perturbation
to the sizes of the files will cause a mismatch between the stated and actual characteristics of the

generated traffic.

File expiration is relevant when using Geist to generate traffic for testing a proxy server
functionality. In this case, the proxy server will serve unexpired requests from a local copy, if
one exists. In case of an expired request however, the proxy server will invalidate the local copy
(if any) and proceed to get a fresh copy from the designated native server. As expected, the file
obtained from the native server will be cached locally until it is either explicitly invalidated or it
is displaced due to lack of local storage. The time-to-live period for each file is defined via the
distribution <expiry_time_parms> which gives the expiration time in seconds. When the trace
generator encounters a file-request for the first time, it uses this distribution to generate a TTL
for the file. Every successive request for the file results in checking if the TTL has expired, and

if so, the request option explained above is set to 2.

One difficult aspect of specifying dynamic GET is the required parameters for the ASP script.
In general, scripts could have arbitrary parameter requirements and supporting them explicitly is

simply impractical. Instead, Geist takes the following approach:

1. The trace generator produces at most one parameter, which is a file-name. The assumption
is that the scripts used have capabilities to generate all required parameters. For example,
when setting up the server for the experiments, one could write a front-end “search.asp”
which internally generates the required parameters and then invokes the actual search script.
This approach is adequate for testing purposes so long as the client doesn’t need to know the
parameter. Geist does not specify precisely what sort of distributions and other information

will be used to generate the parameters.

2. When the input to the traffic generator comes from an actual HT'TP log instead of the trace
generator, the input will have the necessary parameters. The traffic generator passes such

parameters to the server without examining them.

The trace file is generated in the short format if the number of clients “num_clients” is given as
1. If num _clients>1, the resulting trace must be further divided up among various clients. Geist

handles this in two steps. In the initial trace generation phase, the output is generated in the

22

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

long format, which includes all the fields in the short format preceded by two others:

client_id Indicates the client that should generate this request. (Client id’s start at 0).

user_id Virtual user id that generates the request. (For information on virtual users, please see

the discussion on transactional characterization).

The trace file in long format can be split into client-specific files, each of which is again in the
short format. This splitting is done by invoking the trace generator with -s option. Note that the
traffic generator part can only take the short format at input.

5 Available Probability Distributions

The trace generator input file needs to specify probability distributions for a variety of purposes
including cascade construction, request sizes, life-time of documents, nonstationarity profile, ref-
erence frequencies, and system queue normalize service time). A distribution is specified using

the syntax:
{<dist_name>, <offset>, <max_value>, <mean_value>, <aux_value>, <pointer>}
The various elements are explained below:

dist_ name Name of the distribution, which can be Empirical, Exponential, Gamma, Log_normal,

Pareto, Zipf, Poisson, Polynomiall, Polynomial2, Uniform, Triangle.
offset Convenient to interpret it as min value for Uniform, Empirical, and Zipf distributions.

max_value Maximum value. Except in cases where the random numbers of generated internally
using an empirical distribution, rejection method is used to enforce the maximum value
(i.e., if the generated value exceeds the maximum, a new random number is generated).
This could make the generation very inefficient if the probability of exceeding the maximum

value is large. A <max_value> of -1 can be specified if no limit is to be place on it.

mean_value Usually the mean (expected value) either including the offset (for Zipf) or exclud-
ing the offset (for all other distributions where mean is given). The distributions where
<mean_value> DOES NOT represent the mean include:
Empirical: <mean_value> is the spacing between successive values of the discrete set.
Triangle: <mean value> is the actual mode of the distribution.

Polynomiall <mean_value> is the a value, i.e., the slope of the curve at minimum and

maximum values.

23

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

Polynomial2 <mean value> is —« value, i.e., negative of the slope of the curve at mini-

mum and maximum values.

aux_value Interpretation depends very much on the distribution; this value may be unused, used

to represent standard deviation, or some other parameter (see below).

pointer NULL for all distributions other than Empirical. For empirical, it gives the pointer to
the list of values specifying the empirical distribution (more details follow). Internally, the
program also uses this field for distributions that are easier to handle by explicitly listing
the values (e.g., limited support Pareto/Zipf distributions).

In the following, we describe each of the available distributions by providing specific examples:

Empirical Geist does not support a completely general description of empirical distribution
which would require a list of value and probability pairs. Instead, it only allows a mass
distribution specified at equally spaced points. Of course, the minimum and maximum

values and the step-size can be specified explicitly. Here is an example:

double prob_list[10];
prob_list = {0.04, 0.07, 0.11, 0.15, 0.19, 0.15, 0.12, 0.08, 0.06, 0.03};
ns_profile_parms = {Empirical, 4.5, 36.0, 3.5, 1.0, prob_list};

This defines a distribution over the range (4.5, 36.0) with a spacing of 3.5. The list of
probabilities at the N = 1+ (36 — 4.5)/3.5 = 10 points is given by pointer to the user-
defined array “prob_list”. Note that declared size of “prob_list” can be larger than 10,
but the first 10 elements should still sum to 1.0. The fifth parameter is unused for this

distribution.

Exponential This specifies a shifted exponential distribution restricted to some maximum value.

Here is an example:
req-size_parms = Exponential, 40, 1460, 67.0, 0.0, NULL;

This specifies a exponential random variable with (original) mean of 67.0, shifted up by
40. That is, the effective mean of the distribution is 107.0. The maximum value is limited
to 1460 (this is for the shifted random variable, i.e., after including the offset of 40). The
fifth parameter is not needed here. The convention used in this and other distributions
defined over the positive real line is that the distributional parameters (<mean value>,
<aux_value>) are specified without regard to <offset> and <max_value>. The <offset>
value is used as a shift and <max_value> as a cut-off value. That is, the random number
generation first generates a value according to <mean_value> and <aux_value> parameters,

adds in <offset> and if the resulting value exceeds <max_value>, this instance is rejected

24

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

and the next one generated. Note that the truncation means that the generated distribution
will NOT have a mean of <offset> + <mean_value>.

Gamma This specifies the shifted gamma distribution restricted to a finite value. Here <mean_value>
and <aux_value> specify the mean and std deviation of the original (unshifted) Gamma
distribution. (For the purposes of RV generation, Geist computes the o and 8 parameters

during the initialization phase).

Log-normal This generates the shifted Log-normal distribution restricted to a finite value. Here
<mean_value> and <aux_value> specify the mean and std deviation of the original (un-
shifted) Gamma distribution.

Pareto The description for this is almost identical to that for Zipf except for the essential dif-
ference that Pareto is real-valued. In particular, exactly one of the <mean_value> and

<aux_value> parameters must be set to 0.

Poisson This specifies the shifted, truncated Poisson distribution. The given <mean value>

does not include the shift and the <aux_value> parameter is not needed.

Polynomiall This specifies a 3rd degree spline in the range <offset> and <max_value> with a
maximum value at the mean (i.e., at (jof fset;+jmaz_value)/2) and symmetric around it.
In this case, <mean_value> is not the mean, but rather the slope of the curve at the end

points. This distribution may be useful for the cascade generator.

Polynomial2 This is basically a mirror image of Polynomiall wrt horizontal axis. That is, it
has value minimum of 0 in the middle and maximum value at <offset> and <max_value>

with <mean_value> giving the negative of the slope at the endpoints.

Triangle This specifies the triangle distribution in the range <offset> and <max_value> with
mode (tip of the triangle) at <mean value>. Here the <mean_value> obviously accounts
for <offset>. Triangle-int provides the integer counterpart to Triangular distribution and

must have all 3 parameters as integers.

Uniform This specifies the uniform distribution in the range <offset> and <max_value> with
<mean_value> and <aux_value> being irrelevant. Uniform-int provides the integer coun-

terpart to Uniform distribution and must have both parameters as integers.

Zipf Here the <aux_value> parameter represents the « value of the distribution and the given
<mean_value> DOES include the offset. Note that « and the unconstrained mean_value
are simply related by a = 1/(1 — min_value/mean_value), thus only one of these should
be specified. The convention adopted is as follows: If it is desired to explicitly specify the
unconstrained mean, this should be indicated by providing a value of 0 for <aux_value>.

Similarly, if it is desired to explicitly specify «, the <mean_value> parameter should be

25

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

given as 0. Geist will correctly fill in the missing value; that is, any subsequent references to
the parameters of this distribution will yield correct values of both the parameters. Since
Zipf is integer-valued, the given <offset> and <max_value> must be integers. (For efficient

RN generation, all Zipf distributions are first converted to a discrete distribution by Geist).

In all cases, Geist reports the mean and standard deviation of the distribution as it pro-
cesses it. Currently, with the exception of Zipf distribution, the <max_value> is ignored in these

calculations.

6 'Traffic Characteristics

This document concentrates mostly on how to use Geist. The underlying theory behind Geist is
amply discussed in [6, 7] and is covered here only briefly. In particular, Geist does not attempt to
emulate individual users and directly generates the aggregate traffic as seen by the server. This
allows a direct control over the global properties of the traffic which makes it possible to generate
traffic with given correlational properties (long, medium or short range dependent) and allows

convenient introduction of multifractal and non-stationarity properties in the traffic.

Geist controls the temporal properties of the traffic by using the M/G /oo paradigm that can
generate asymptotically self-similar as well as short and medium range dependent traffic. As such,
the marginal distribution of the generated arrival process is Poisson (the occupancy distribution in
a M/G/oo queue), however, it can be easily transformed to a process with the desired distribution
as detailed in [10]. Such a transformation is adequate at least as far as second order properties

are concerned.

6.1 Basic M/G/oo Traffic Generation

An M/G/oo process is defined as follows: Consider a discrete-time M/G/oco queue with some
time-slot A as the time unit. All Poisson arrivals during a time-slot are put into service at the
beginning of the next time-slot. Let P(S = k),k = 1,2,... denote the mass function of the service
time S in units of time-slots. Let S denote the residual service time of a customer. Obviously,
P(§ = k) = 2531, Tt is well-known that the queue-length distribution in this system at the

end of each slot would be Poisson with mean A = A\yE[S] where)¢ is average number of arrivals

per slot to the M/G/oo queue. However, the queue-lengths at the end of successive slots are
correlated with autocorrelation function p(k) = P(§ > k). Thus, if we use this queue-length
process to generate arrivals for the system of interest, we have the following arrival process A:
the marginal distribution of A is discretized Poisson with rate A per slot and P(.SAv > k) gives
the autocorrelation function. The detailed equations may be found in [7, 10]. As shown in [10],

M/G /oo model can be used for generating traffic with long-range, medium-range and short-range

26

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

dependence. For long-range dependence, we need the following form for p(k):
pk)=ak?, 0<pB<1 (2)

where o = p(1) = 1 —1/E[S] (this is obtained by observing that p(k) — p(k+ 1) = P[S > k]/E[S]
and substituting ¥ = 0.) Then the generated arrival process is asymptotically self-similar with

Hurst parameter H = 1—3/2 where (3 is the decay rate of the variance as a function of aggregation.

It is shown in [10] that a variable bit rate (VBR) video traffic is best modeled as medium-range
dependent (MRD) by choosing p(k) as:

p(k) =ae ®VE 0<p<1 (3)
where o = p(1)e® = [1 — 1/E[S]]€®. Finally, for the short-range dependent case, we have:
pk)=ae Pk 0<p<1 (4)

where « is again given by a = p(1)e? = [1 — 1/E[S]]€’.

The traffic generator supports all three types of dependencies discussed above. In all cases,
the decay rate (8 is assumed to be given. For robustness, we determine E[S] by requiring that
P(S = 1) (the probability of requiring 1 slot worth of service) is set at a given value 7. Since
E[S] =1/(1 - p(1)),

p(k) — p(k +1)

1—p(1)

From equation (5) and the fact that P(S > 0) = 1, we can solve for p(2) as

P(S>k)=

()

p(2) = p(1) =[1 = p()](1 =) =1 = (2 = n)/E[S] (6)

Therefore, by substituting for p(2) from equations (2) — (4), we get:

0 s 2-8 LRD
E[S] = %;’7 where 6={ 821 MRD (7)
e P SRD

Since the M/G /oo system gives us only a discretized arrival process, the next step is to generate
times of individual arrivals. Since the marginal distribution of the slot arrival process is Poisson,
Geist attempts to retain that at smaller time scales by trying to make interarrival times within
a slot exponentially distributed. To achieve this, if there are n arrivals within a slot, all those
arrivals are assigned precise arrival times by using uniform distribution over the slot [4]. If a
marginal distribution other than exponential is desired, Geist can transform the inter-arrival time
series to one that has the desired distribution. Currently, Geist only allows a specification of the
coefficient of variation of inter-arrival times. It uses this to construct a suitable branching Erlang

type of marginal distribution.

27

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

For long-range dependent traffic, the parameter § is best calculated from the desired H pa-
rameter value using = 2(1 — H), and thus must lie in the range [0,1]. For medium and short
range dependence, the parameter could be an arbitrary positive number — however, since e
decreases very rapidly with 8, moderate and large values are unlikely to result in much different
behavior. In particular, a 8 around 5-6 with SRD will yield effectively a Poisson process. Note
that in the M/G/oo pardigm, the relationship p(1) = 1 — 1/E[S] precludes that the correlations
will be negligible between closely spaced samples. This is not an issue in practice since any random

number generation scheme will necessarily yield high correlations between close-by points.

The variables relevant for controlling basic traffic properties are described below.

slot_size_mult Slot_size multiplier. This gives the slot_size in the units of inter-arrival time. The
slot-size is needed to generate the M/G/oo traffic. Generally, a slot-size of 10-20 is quite

adequate and there is no need to fine-tune this parameter.

correlation _type This is a enumerated type with valid values of “short_range”, “medium range”

and “long range” as described above.

st_decay_rate The service time decay rate factor denoted by 8 above. See the discussion above

about on how to choose this.

one_slot_st_prob Probability that the service at the M/G /oo queue needs only one slot (denoted

as 71 above). Generally, there is little reason to change this value.
avg_arrival rate Average arrival rate (per second).

iat_coeff_var Multiplier to the inter-arrival time coefficient of variation in the default case (i.e.,

with iat_coeff_var= 1). Currently, iat_coeff_var< 1 is not implemented.

If no multifractal properties are specified for the traffic (i.e., casc_gen_slots=> 1), the given
iat_coeff_var should actually be achieved by the generated traffic (although only approxi-

mately because of the slot-boundary effects).

6.2 Introducing Multifractal Properties

As the traffic passes through the network its characteristics are affected not only by the usual
queuing/processing delays at the nodes but also network level mechanisms such as TCP flow
and congestion control and segmentation/reassembly of packets at intermediate nodes. The time
constants of these activities usually fall in 100 ms range which is much less than the time constants
involved in user activities. Consequently, self-similarity aspects of the traffic are typically not
affected by the network dynamics. Nevertheless, network dynamics has a substantial influence on

traffic characteristics and hence on its queuing performance.

28

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

A direct emulation of network effects on the traffic is necessary for network-centric studies
where the network components (routers, links, proxy servers, firewalls, etc.) are represented
explicitly; for most server-centric studies, testing over the WAN or duplicating the network in
the laboratory is usually impractical. Geist addresses this issue by providing an indirect way
of accounting for the network impact on the traffic. This is based on the recent work that has
shown that network impacts can be captured by using the concept of multi-fractal properties.
Multifractality is defined as an extension of self-similarity. Basically, the idea is to capture finer
time-scale properties by considering how the higher order moments of the aggregated process decay
with the time-scale. For a self-similar process, the nature of this decay is fixed by the H parameter;
however, for more general processes, the decay rate could depend on the order of the moment.
As with self-similarity, much of the work to date on multifractal properties considers byte traffic
on a network link; however, given the rather small sizes of requests, similar properties apply to
request level traffic also. Geist provides the capability of introducing multifractal-like properties
in the traffic via a cascade construction process, in case such effects are deemed important. Of

course, the user can choose not to introduce these effects.

The main characteristic of a multifractal arrival process is that it can be described via a mass
redistribution according to a special random process called a cascade generator. In particular,
Geist uses a so called semi-random cascade generator C' which is defined as a random variable

[43

over the interval [0,1] with a mean of 1/2 [3]. Basically, the idea is to take a “mass” (or number
of arrivals) over a large interval and subdivide them recursively into left and right portions by
using instances of the RV C. If this process were to be repeated indefinitely, it leads to the
true mathematical object called the multifractal; however, the practical use of subdivision must

necessarily be very limited.

To apply subdivision to the generated M /G /oo process, the generated arrivals are first accumu-
lated over K 2 2L successive slots, where L is an input parameter that describes the time-scale
(or “level”) at which cascade construction is introduced. Suppose that we start with a total of N
arrivals over 27 slots. Let ¢; denote the first instance of the random variable C. Then, in the first

2L=1 glots, and the remaining N(1—c;) mass to the

step, N x ¢; mass will be allocated to the left
right 2! slots. (Since it is necessary to keep the mass integer-valued, N x c¢; is always rounded
to the nearest integer.) In the second step, the left and right portions are further subdivided. The
subdivision continues until either a subinterval contains zero arrivals or a pre-determined level

Ly;L is reached.

It turns out that the actual distribution of the cascade generator C is irrelevant, only its
variance matters [7]. Furthermore, the variance has a huge impact the traffic characteristics and
queuing properties — the queuing delays increase very rapidly with the variance of C'. Thus, a
uniform distribution of [0,1] (with a coefficient of variation of 0.577) already provides much higher

variance than is likely to be needed in practice. Of course, a uniform distribution with a narrower

29

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

range (e.g., Unif(e, 1 — @) with 0 < @ < 0.5) can provide the required scaling of the variance
[by a factor of (1 — 2a)?]. Of course, one could also use other distributions such as Triangular,

Polynomiall, Polynomial2, and Poisson.

Geist allows the cascade construction to occur from level L down to certain number of levels;
however, it is found that [7] that the largest impact on traffic occurs at level L itself. The variables

relevant for controlling basic traffic properties are described below.

cascade_gen_slots Number of slots over which arrivals are accumulated for cascade construction.
Must be chosen as a power of 2, i.e., 2L where L is as defined above. If no cascade generation

is desired, this parameter should be set to 1.

cascade_gen_parms Cascade generator distribution. Must have the range [0,1] (or smaller) and
must be symmetric about the mean of 0.5. A range narrower than [0,1] is one way to reduce
the variance of the distribution. The example in section 6.6 illustrates this for the uniform

distribution.

max_casc_levels Maximum number of levels for which the subdivision process described above
will continue. The subdivision process also terminates when an interval contains only one
arrival or the interval size is down to a single slot. Thus, if the subdivision is required down
to the level of single slot, it is okay to set this parameter to some large value [i.e., larger

than log, (cascade_gen slots)].

6.3 Traffic Nonstationarity

Most of the web-traffic studies assume a stationary traffic; however, in many environments, the
traffic cannot be considered to be reasonably stationary over periods larger than 10-15 minutes.
Geist provides the capability to introduce nonstationarity in the traffic, should this be important
for the study at hand. This is done by modulating the number of arrivals during each slot (as
generated by the M/G /oo process) by a nonstationarity profile which essentially specifies the level
shift distribution. The variables involved are as follows:

ns_profile_parms Specifies the distribution of the level shift process which must be a non-
negative random variable Z with mean 1.0. This could, of course, be any of the distributions

supported by Geist.

stationary_period This is the duration of time for which the level shift process remains at a
given level. That is, a new value of the <ns_profile_parms> RV is generated once for each suc-
cessive stationary_period. The total number of arrivals in a slot is then this value multiplied
by the number of arrivals determined from the M/G/oco model. The <stationary_period>

must be an integer multiple of the slot-size.

30

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

level_shift_period The purpose of this parameter is to allow a smooth transition from one value
of the random variable Z to the next. That is, the shift between the levels is not abrupt,

but instead occurs linearly over the period given by <level shift_period>.

The nonstationarity profile distribution be determined from a real traffic trace (e.g., HTTP
logs of a web-site) and may well be an empirical distribution. An essential part of this estimation
is determination of the stationarity period as well. A constant stationarity period is assumed here

for simplcity in parameter estimation.

6.4 Transactional Composition

For e-commerce front-end servers, various types of user transactions (e.g., product search, product
order, order status, payment, etc.) will typically access appropriate scripts for performing these
functions. In Geist, we assume that each dynamic request invokes exactly one ASP script and
this request, together with all static file accesses following it, forms a user transaction. Typically,
user transactions have certain ordering properties, which are conveniently described via a Markov
chain. For example, a product order is likely to be followed by the payment transaction. Geist
supports both zeroth order and first order Markov chain models. The Markov chain order is

defined by the variable markov_chain_order which can currently take values 0 and 1 only.

It is important to note that the Markovian transactional model describes the behavior of a
given user, rather than that of the aggregate traffic. As such, Geist has no concept of individual
users since it generates aggregate traffic arriving at the server directly. In order to handle transac-
tional ordering and possibly other user-level characteristics (e.g., cookies, abandonments, retries,
etc., which are currently not implemented), Geist uses the concept of a virtual user. The number
of virtual users is determined as the product of “avg_think time” and “avg arrival rate”. Then,
each request is equiprobably assigned to one of the users subject to the constraint that the time
between successive requests by the same user never goes below 1/10th of avg_think_time. In the
long trace format, user_id’s are also included in the trace file. Although the traffic generator part
currently has no use for user-id’s (and, in fact, doesn’t recognize the long trace format), user-id’s

could be useful for more advanced features.
The parameters relevant for transational properties are as follows:
num_asp _scripts Number of ASP scripts used by dynamic GETs.
asp_file_names Names of ASP scripts (an array of size <num_asp_scripts> and of type string).

markov_chain order Order of the Markov chain defined over ASP scripts. Current valid values

are 0 or 1 only.

31

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

asp_access_probs ASP access probabilities. If <markov_chain order>=0, this is a 1-D array
giving the probabilities of invoking individual ASPs (irrespective of the last ASP invoked).
If <markov_chain_order>=1, it is a transition probability matrix where the (i,7)th entry
gives the probability of invoking the jth ASP following the invocation of the ith ASP.

avg_think time Gives the average user think time between successive requests and used to
compute number of virtual users. Note that each virtual user operates according to its own
Markov chain.

num _clients Number of clients over which the trace is to be distributed (i.e., number of clients

to be used for actual traffic generation).

The actual server-side script executed by a transaction embodies the resource requirements in
processing the transaction. Geist only indicates which scripts are executed and how often; it does
not explicitly specify the properties of these scripts. Such an approach gives maximum flexibility
to the experimenter in writing the scripts (or simply using the existing scripts for the e-commerce
application of interest). It is easy to extend Geist to generate some simple scripts based on a set

of given parameters, but this is currently not implemented.

6.5 Request Process and Response Sizes

Irrespective of the of the type of access (dynamic or static), the characteristics of the response
sent out as a result are important from the perspective of both the client and the network. Geist
provides control over response size by requiring that every Get request retrieve a “file” from a
given “file-set”. As in SPECweb99 benchmark, it is assumed that a dynamic GET simply creates
some additional data (assumed to be rather small in size), which is appended or prepended to the
static file being requested. The characteristics of the file-set are explicitly given, and are used by
the file-set-create functionality of Geist. The access pattern to the file-set is explicitly specified
and kept orthogonal to the transactional characteristics. For example, a lot of computation in
the server-side script or the fact that that transaction is a HTTPS transaction has no bearing on

the size of the file retrieved.

The file-set specification is as follows. Files belong to one of K classes, numbered, 1,..., K and
each class has the same M — 1 file indices numbered 1,..., M — 1, for some input parameter M.
The file sizes in class i are M-times that of file sizes in class t—1. In particular, filej € 1,..., M —1

of class i has size CjM'~! where C is again an input parameter. The total number of available
files are distributed among the K classes according to certain fractions ¢_i,7 € 1..K. The total
number files thus assigned to a given class are further distributed among the M — 1 possible
indices according to certain given fractions. The total number of files can be distributed among
a set of “directories”; this distribution is for convenient disk storage only — directories have no

other significance.

32

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

The M — 1 files in a class can be assigned a “popularity index” which describes the relative
file access frequency. (This mapping is identical for all classes.) By convention, it is assumed
that smaller popularity index means more frequent accesses. Next, actual access probabilities can
be defined over the popularity index as a monotonic function. Often, a Zipf distribution is quite
realistic for this mapping, i.e., the probability that the popularity index exceeds some value n is
given by:

P(A>n)=Cn"% 1<n<N (8)

where N is the number of files. Here o > 0 is a parameter of the distribution and C' is a constant
that ensures that all probabilities sum to 1. Typical values of a observed in real systems are
around 1. Note that if no popularity index is used, the access probabilities may be generated by

using a non-monotonic function (e.g., the truncated Poisson distribution used in SPECweb96 [1]).

The variables relevant for file sizes and accesses are as follows:

num_classes Number of file classes (denoted as K in the above). For example, <num_classes>=4
in SPECweb99.

min_file_size Size of the smallest file in the file-set. This is the size of the first numbered file of
class 1 (denoted as C' in the above). For example, C' = 100 in SPECwebb99.

sizes_per_cl Number of file sizes per file class (same as M — 1 in the above). For example,
<sizes_per_cl>=9 for SPECweb99. In this case there are 9 files in each class with relative
sizes of 1,2,...,9 and successive classes have size jumps by a factor of <sizes_per_cl>+1 =
10. So, with the default <min_file_size>, classl file sizes are 100, 200,...,900 bytes, class2
sizes are 1000, 2000, . .., 9000 bytes, and so on.

req_size_parms A distribution giving the request size characteristics.

class_popul_probs Fraction of files assigned to each class (an array of size <num_classes>).

Normally, (and in the SPECweb99) each class would get equal number of files.

num_directories Number of directories. Each directory contains <sizes_per_cl> X <num_classes>
files. The total number of files are divided among various classes according to <class_popul_probs>.
In SPECweb99 <num_directories> is given by (25 + <avg-arrival rate>/5).

file_popul_probs Fraction of files within a class assigned to various sizes (an array of size
<sizes_per_cl>). Normally (and in SPECweb99) each size category would get equal number
of files.

fp_ref freq_parms Access frequency distribution over the directories (numbered 1 to <num_directories>).
In SPECweb99, this distribution is Zipf with a = 1.0.

33

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

class_access_probs Relative probability of accessing files in a class (an array of size <num classes>).
In SPECweb99, the relative probabilities are (0.35, 0.50, 0.14, 0.01).

fpop_to_fno_func A permutation mapping of file popularity index to file size index. For SPECweb99,
the mapping is (5,4,6,3,7,2,8,9,1). That is, the popularity index of 1 maps to file no 9 in

the class, index 2 maps to file no 2, etc.

pi_ref_freq_parms Popularity index reference frequency distribution. This is a discrete distri-
bution over the popularity indices. In SPECweb99, the distribution is Zip over the range
(1..9) with o = 1.0.

Geist also allows specification of location of various directories. The corresponding variables

are:

web_server_root Location of the web-server files (directory where the directories for non-secure

files are located).
https_root_dir Root directory (located in <web_server_root>) for secure HTTP files.

asp_root_dir Root directory for ASP scripts (located in <web_server_root>)

6.6 An annotated Example of Input File

#debug[echo_tokens] = 1;
debug[echo_input] = 1;
#debug[init_stats] = 1;
#debug[big_cum_dists] = 1;

#debug[transient_stats

#debug[rand_no_gen]

1=1;
1;
#debug[file_no_gen] = 1;
1;

#debug[mass_redist]
#debug[binary_search] = 1;
#debug[mgi_actions] = 1;
#debug[queue_actions] = 1;
#debug[fc_actions] = 1;

b

#debuglarrival_times] = 1;
#debug[loading_parms] = 1
#debug[time_dep_parms] = 1;

double temp, test_dist[27], std_sf;

34

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

#aokxkokkokkkokkokkkkk ALWAYS DO THIS FIRST AND FOLLOW UP WITH A GO STMNT soksk skok sk k sk ok sk ok k
#

max_casc_levels = 16; # Not necessary to assign values to these
#markov_chain_order = 2;

markov_chain_order = 1;

num_classes = 4; sizes_per_cl = 9; num_asp_scripts = 1; arr_stat_buckets = 4;
GO;

peak_mean_ratio = 2.95; # Max arrrival sample size compared with avg
one_slot_st_prob = 0.032; # Prob that the service needs only one slot
window_size_mult = 1; # #of slots for accumulating arrivals
#H#>>__________ The following deals with ASPs and traffic fractions ____________
web_server_root = "root/";

https_root_dir = "secure_fs";

asp_root_dir ="y

#asp_file_names = {"search", "order", "status", "payment"};
#asp_file_rel_pl = {0.10, 0.02, 0.02, 0.05%};

#asp_access_probs = { {0.35, 0.30, 0.20, 0.15}, {0.25, 0.20, 0.30, 0.25},

{0.45, 0.40, 0.10, 0.05}, {0.30, 0.20, 0.20, 0.30} };
asp_file_names = {"LotsOfWork"};

asp_file_rel_pl = {0.20};

asp_access_probs = {1.0};

static_get_frac = 1.0; # Frac of static GETs (secure or not)
ssl_traf_frac = 0.0; # Frac of secure traffic (static or dynamic)

expiry_time_parms = {Uniform, 8.0, 16.0, 1.0, 0, NULL};

Expiry time of contents in proxy cache (in case going through proxy)

-
##>>_ The following deals with SRD vs. LRD traffic _____________
w>>_ Uncomment the following for SRD traffic
correlation_type = short_range; # Nature of M/G/inf service time distribution
st_decay_rate = 2.4; # Decay rate of M/G/inf service time tail
wH>>_ Uncomments the following for LRD traffic

correlation_type = long_range; # Nature of M/G/inf service time distribution

35

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

st_decay_rate = 0.20; # Decay rate of M/G/inf stime tail = 2x(1-H)

##>>___ Set following to >1 to introduce multifractal properties along with LRD

cascade_gen_slots = 64; # Consecutive slots for cascade
std_sf = 0.65;

cascade_gen_parms

{Uniform, 0.5 - std_sf/2, 0.5 + std_sf/2, 0, 0, NULL};

slot_size_mult
bucket_thresholds

25; # Slot size in no of avg interarrival times.

{0.85, 0.65, 0.45, 0.0}; # buckets to monitor arrival process

avg_arrival_rate = 500.0; # Average arrival rate/sec

iat_coeff_var =1.0; # Interarrival time coeff of variation
avg_think_time = 5.0; # This is needed to generate virtual user IDs
num_clients = 1; # No of clients used for workload generation

##>>____ As an alternative, we can try the following, which gives a full sine
wave with a period of ovl_on_time+ovl_off_time and range of 0.5 to 2.5.
#

ovl_on_time = 30.0; ovl_off_time = 30.0; ovl_magnitude = 1.0;

temp = \time(t_current)/(ovl_on_time + ovl_off_time);

avg_arrival_rate = 10.0 *(1.5 + \sin(temp));

##>>_ The following deals with load variations _____________

ovl_start_time = 0.0; ovl_cycles = 0;
double slot_size;

slot_size = slot_size_mult/avg_arrival_rate;
wWw>>_ Uncomment exactly one of the following:

ovl_on_time = 100000; ovl_off_time = 100000; ovl_magnitude = 1;

ovl_on_time = 30.0; ovl_off_time = 0.0;

##>> This generates an increasing sawtooth between 1 & 2 (no off period)

temp = (\time(t_current) - \time(t_ovl_start))/(ovl_on_time - slot_size);
ovl_magnitude = 1 + temp;

36

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

##>>____ This generates a half sine wave (with max of 3.0) & equal off period
ovl_on_time = 30.0; ovl_off_time = 30.0;
temp = (slot_sizex5 + \time(t_current) - \time(t_ovl_start))/ovl_on_time;

ovl_magnitude = 1 + 2%\sin(3.1418 * temp);

#H>>________ This generates a square wave between levels 1.0 & 2.0

ovl_on_time = 60.0; ovl_off_time = 60.0;
ovl_magnitude = 2.0;

it
req_size_parms = {Log_normal, 50, 1460, 40, 20, NULL}; #offset, max, std, mean
test_dist = {6.289e-03, 1.258e-02, 6.289e-03, 1.887e-02, 1.887e-02, 6.289e-02,
1.887e-02, 8.176e-02, 6.918e-02, 1.132e-01, 6.289e-02, 1.069e-01,

5.031e-02, 5.031e-02, 4.403e-02, 4.403e-02, 7.547e-02, 6.289e-03,

1.887e-02, 2.516e-02, 4.403e-02, 2.516e-02, 6.289e-03, 6.289e-03,

1.258e-02, 6.289e-03, 6.289e-03};

#

ns_profile_parms = {Empirical, 4.7, 30.7, 1.0, 1.0, test_dist};

#

Given the original histogram for nonstationarity, we want to recast it so

that the difference successive x-values is 1.0. For this, we need to divide
them by the factor (x_max - x_min)/(n_values - 1). This gives the new range
4.7 to 30.7.

stationary_period = 9000000; # Stationary period

level_shift_period= 20.0; # Time to shift from one stationary level to next
min_file_size = 100;

num_directories = 25 + \int(avg_arrival_rate/5); # sweb99 rule for #directories

temp = 1.0/sizes_per_cl;
file_popul_probs = {temp..temp:sizes_per_cl};
class_popul_probs = {0.25, 0.25, 0.25, 0.25}; # popul dist over classes

fp_ref_freq_parms = {Zipf, 1, num_directories, 0.0, 1.0, NULL};

Reference pattern over directories is Zipf with alpha=1
class_access_probs = {0.35, 0.50, 0.14, 0.01}; # access freq over classes
1, 2, 3, 4, 5,6, 7, 8,9

37

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

fpop_to_fno_func = {5, 4, 6, 3, 7, 2, 8, 9, 1};
file popularity index to size_index mapping for each class
pi_ref_freq_parms = {Zipf, 1, sizes_per_cl, 0.0, 1.0, NULL};

Reference pattern over popularity index is Zipf w/ alpha=1

max_cached_files 10000; # Maximum no of files allowed to be cached.

cached_file_frac 0.025; # Size of file-cache as frac of file-set-size

glength_limit 250000; # Max requests in the system buffer

action_type = gen_req; # Generate traffic (no concurrent simulation)
time_series_type = 04; # General arrival time-series in long format
system_st_parms = {Uniform, O, 0.7, 0.7, 1.0, NULL};

reporting_time = 3200; # Statistics reporting time in secs
transient_period = 3200; # Time to bring system to steady state

print *; # This will print out everything (optional)

debugl[echo_input] = 0; # This will turn of echo_input for time_dep stmnts

G0(3200, resume_simul);
In this second occurrence of GO, the second argument still doesn’t matter
since the program will do the warmpup and go ahead with steady state

simulation. On subsequent GO’s, # the second argument will matter.

#i##i## Make sure that transient and run times are multiples of cascade_gen_slots X

slot_size, since the program will extend it to this multiple!!

7 Program outputs and invocation

7.1 Auxiliary output

The trace generator provides an boolean array called “debug” whose components can be set to
get additional debug output which goes either to standard output (if the program is invoked with
option -t) or to the file <in_file>.out. The possible values for the array index and its meaning are
listed in Table 1.

By default, all switches are set to false. The switches can be turned on or off at selected
places in order to get only the desired output. For example, “echo_input” can be enabled only for
those statements where it is suspected that the statement is not being read properly. As another
example, one could issue a GO statement to run the program for some time, then turn on some

run-time switches, run for some more time to get more detailed output, and turn off the switches

38

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

switch_name ‘ Explanation

The following switches are in effect during program reading

echo_input Echo each input line after it is processed.

echo_tokens Echo individual tokens as they are parsed from the input. (Useful pri-

marily for program debugging).

init_stats Provide program initialization statistics.

big_cum_dists Print out big cumulative distributions (these are not printed by init_stats

to avoid clutter).

The following switches are in effect during program run

rand_no_gen Print out unif(0,1) and the transformed random numbers as they are
generated.

file_no_gen Print variables connected with the generation of the files accessed by the
requests.

mass_redist Print statistics related to the cascade construction process for introduc-

ing multifractal properties in the traffic.

binary search Print binary search progress for finding keywords.

mgi_actions Print insert and deletes from the M/G /oo queue used in arrival process
generation.

queue_actions Print inserts into and deletes from the system queue.

fc_actions Print stack management actions connected with maintaining the LRU
file cache.

arrival_times Print arrival times in a slot before and after adjustments for coefficient

of variation (CVAR) different from 1.

loading_parms Prints out necessary information every time the loading level changes.

See section 3.5 for clarification.

time_dep_parms | Prints out values of time-dependent parameters at the beginning of every

time-slot.

transient_stats | Print traffic statistics during the transient (or warm-up) period.

Table 1: Auxiliary output switches for Geist trace generator

to return to the normal output.

The switch transient_stats only controls the normal statistics that is spewed at the end of each
“reporting_time” period. It does not control other other outputs, say, for example the output
corresponding to the swithc “arrival times” above. In the current version, a decision was made to
disable all auxiliary output specified by the above switches during the transient period. If such
output is desired for debugging purposes, one way to obtain it is by setting the transient_period

to 0 (or some other small value) so that the auxiliary output will start precisely when the user

39

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

wants it.

7.2 Trace Generator Compilation and Invocation

The trace generator has been verified to work on both Redhat Linux 7.3 and MS Windows
NT/2000. Before compilation, you need to get hold of random number package called “ranlib”
which is available under GNU public license from http://netlib.bell-labs.com/netlib/random/.
You only need ranlib.tar.c.gz. For compilation, you need to go to the “geist_trg” directory.

Compilation steps are as follows:

Linux: Use the included Makefile (in the src directory) with “ranlib” source directory path set
up correctly. Before using Makefile use the instructions in it to build the ranlib archive
libran.a. Also make sure that the compile time variable “WINDOWS” at the top of the file

create_file.c is not defined.

Windows: (Use of Microsoft Visual C++ 6.0 is assumed here.) First build the ranlib static
library or a DLL. Next create a new project called geist_trg. Include various files as follows:
(1) include mginf.cpp, misc.cpp, read_parms.cpp, search_ex.c under source files, (2) include
misc.h, global.h, ranlib_cpp.h and search_ex.h under header files, and (3) ranlib library, and
mginf vars.c under resource files. Do not include create_file.c anywhere but do make sure
that the compile time variable “WINDOWS” at the top of this file is defined. Build the

project.
The trace generator is run using the following command:

geist_trg [-a] [-¢] [-n] [r <seed>] [-s] [-t — -0 <out_file>] [-r <rn_seed>] <in_file>
[<settings>]

where

<seed> The new seed value (a positive integer).

<in_file> is the input file containing the program parameters. It carries the extension .inp, but

is given without extension.

<out_file> is the (optional) output file containing the run statistics.

<settings> are program parameter settings made directly from the command line.

The program options are as follows:

40

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

-a option appends (instead of overwriting) all of the above output files.
-c option creates the file-set and then proceeds as usual.
-n option means no simulation; program quits after initialization.

-0 option allows a different output file name, given without any extension. All output files (not

just the .out file) take on this new root name.
-r option provides an arbitrary seed to the random number generator.

-s option means that an existing trace file should be split into client specific files. The current
value of num_clients in the input file must be same or a submultiple of the one used for trace

generation.

-t option redirects .out file to stdout; other files are not affected.

Note that the -c option does basically the same thing as the statement “action_type = cre-
ate_fc;” in the input file. The only difference is that with the -c option, one could still specify
some other action in the input file and the program will proceed with that following the file-set

creation.
The program creates 4 output files, each with identical root name, but with a different exten-

sion as follows:

.out file contains all initialization and simulation statistics.
.trc file contains the generated traffic trace (optional).
.arr file contains arrival time-series w/ window_size buckets (optional).

.qlts file contains queue_length time-series for queue simul. (optional).

If the -0 option is specified, the root names of all these files is the same as <out_file>, otherwise,

1t is same as <in_file>.

It is possible specify the values of input parameters directly from the command line. All such
specifications override the ones in the input file since they are read in after the input program
has been read completely. All command line assignments must be enclosed within a pair of 7 ”
in order to avoid any special interpretation by the shell. They also come syntactically after the

input file. For example:
mginf myfile ”avg_think time = 7.5; action_type[gen_req] = true;”

Note that the last semicolon is necessary, else the program will report a parsing error. As in
the input file, the RHS of the assignment could be an arbitrarily complex expressions, although

the main use of command line specification is to change values of a few parameters.

41

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

Section(s) on GEIST’s Traffic Generator

42

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

8 Usage Information for GEIST’s Traffic Generator

GEIST’s traffic generator engine basically generates the stream of requests as specified in the trace
file(s). Typically, the trace file(s) are created using GEIST’s trace generator (as described earlier
in this manual). Currently, the traffic generator only supports the generation of GET requests

(supporting other HT'TP transactions is planned for the future).

9 Source Package for GEIST’s Traffic Generator

The source package provided was developed on Microsoft’s VC++ package. To build it, you need
to go to the “geist_tfg” directory in the distribution. In addition to the provided source code, you

will need OpenSSL components (to enable generation of secure traffic).

9.1 Installation of OpenSSL Components

GEIST allows the incorporation of OpenSSL (version 0.9.6h) to make requests for secure doc-
uments via the TLS protocol. In order to build GEIST, you will need to download and build
the OpenSSL libraries (http://www.openssl.org/source). GEIST has been tested using version
0.9.6h of the OpenSSL libraries. Please refer to the documentation with OpenSSL for building
the OpenSSL libraries.

A successful build of OpenSSL will generate among others 2 DLL’s (ssleay32.d1l and libeay32.d11)
and 2 library files (ssleay32.lib and libeay32.1ib). The build process for GEIST requires that the
project link options for additional dependencies (Project => Properties => Link, Additional De-
pendencies) contain a link to the generated library files (ssleay32.lib and libeay32.1ib). This also
requires the header files (from OpenSSL) to be copied to the include directory. In order to run
GEIST using OpenSSL, the corresponding DLL’s (ssleay32.d1l and libeay32.dll) must be copied

to folder used during runtime.

9.2 Command Line Options

The following is a command line usage description for GEIST.

geist.exe [-p] [-m configfilename] [-x bcastportnum] -f [tracefilename] [-1]

-p : To be used for prime client(s) only

-m : Config File Name (config.txt by default)

-f : Trace File Name

-X : UDP port number for info exchange between clients

43

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

-1 : To be used only if a logger is used on the server

10 Features of GEIST’s Traffic Generator
GEIST allows you to generate the following types of traffic:

Static and Dynamic GET requests — ReqCmd of each transaction in the trace is always
”GET”

Non-Secure and Secure Requests — ReqType of each transaction can be either 0 (for non-

secure) OR 2 (for secure)

Requests to Cacheable or Non-cacheable — ReqType of each transaction can be 0 (for non-

secure, cacheable) OR 1 (for non-secure, non-cacheable)

Direct Requests OR Requests via a Proxy — The configuration file (described in more de-
tail in the next section) has an entry for the proxy server address (if this is left as 0.0.0.0,

then a direct web server request is assumed)

Overload Situations — This can be easily done by generating a trace with periods of overload

activity as desired.

11 Execution Architecture of the Traffic Generator

The overall architecture of traffic generation is based upon using an arbitrary number of client
boxes, each of which runs an instance of the Geist traffic generation engine. Each client consists
of pool of sender threads, receiver threads and a timer thread. Additionally it requires a trace
file that defines the request sequence. This trace file can be generated by splitting the overall
trace file mentioned earlier in a variety of ways. One simple manner in which this can be achieved
is a round robin splitting based on the number of clients being used in the test. It is expected
however that in emulating e-commerce transactions a more sophisticated splitting mechanisms
would be needed in order to maintain transactional coherence. After splitting the trace file, one

of the clients needs to be specified as a prime client.

The prime client is tasked with the responsibility sending global information to the other client
boxes including such information as IP address of the HT'TP server to be targeted for the test, the
duration of the test and various other configurable parameters like the number of sender/receiver
threads. These and other parameters specified to control the behavior of the traffic generator are

provided as input to the request generation engine in a configuration file such as the one shown

44

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

Parameter Sample Value Explanation

web_server 10.11.12.13 1IP address of the web server under test.
port_no 80 Port number of the web server usually 80
ssl_port_no 443 SSL port number of the web server
proxy_server 0.0.0.0 Proxy server IP address (0.0.0.0 for no proxy)
proxy_port_no 790 Port number of the proxy server.
sender_threads 10 Number of sender threads per client
recv_threads 100 Number of receiver threads per client
config_port 5000 UDP port no. to broadcast global information
warm_time 1 Warm up time

run_time 30 Run time for the test run

time_to_start 2 Virtual clock reset delay at each client
req_per_attempt 1 No of requests by each sender thread on wakeup
cipher_suite RC4-MD5 Cipher suite to be used for SSL handshake

Table 2: Example Configuration (see provided sample config file for more details or entries)

below. Finally, the prime client is also responsible for time synchronization amongst all clients.
This is achieved by broadcasting a time interval after which all the clients reset their virtual
clocks to zero. All time decisions are based on this time zero from here on. After performing

these functions the prime client behaves like any other client box.

The architecture of each client is based on a multithreaded model. Based on information
received from the prime client a pool of sender and receiver threads is created. In addition a
single “timer” thread is created. This thread is tasked with the responsibility of enforcing the
period of test run. The sender threads read information from the trace file. As an example, if
there are five sender threads, the first thread will make the first request from the trace file, the
second thread the second request and so on. This action is performed in a modulo fashion so the

first thread will also make the sixth request.

The iterative process of generating requests to the web server is as follows. In this initial
implementation of Geist, prior to sending a request, the sender threads obtains a handle on a
receiver thread for each request that they are going to make. This receiver thread is obtained
from the pool of receiver threads allocated at initialization. The delegation of responsibility
of receiving a response to a thread other than the ones tasked with actually making requests,
ensures that there is no feedback into the request generation process and requests are generated

independent of the load on the server.

Each request line in the trace file has information about the time at which this request needs to

be made in order to maintain the arrival process correlation. The sender thread blocks on a timed

45

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

synchronization primitive. At the appropriate time the sender thread makes a TCP connection to
the server and makes the HTTP request for the specified file as dictated by the trace file. At this
point the sender thread releases the assigned receiver thread which then blocks on a “recv” call
on the open TCP connection. On receiving the HT'TP response the receiver thread time stamps
the arrival, logs this information and then marks itself as free, thereby making itself available in

the pool of free receiver threads.

This process continues till such time the “timer” thread indicates that the duration of the test
is over. At that time, the sender and receiver threads are killed with the exception of the receiver
threads that are still waiting for a response. On receiving a response, the waiting receiver threads

exit and the test run terminates.

The current request generation engine has been implemented in the C language on the Win32
platform. All thread management routines, synchronization primitives and timer routines are
based on the native Windows API. In this implementation, the communication between the prime

client and the other clients is based on UDP broadcast.

12 Tuning GEIST’s Traffic Generator

The traffic generator can be tuned to provide improved accuracy by adjusting the following

paramaters:

1. Number of GEIST clients used — the higher the better (but lack of synchronization between

clients is an important consideration to keep in mind)

2. Number of Sender Threads — the higher the better (but client processor power needs to be
kept in mind)

3. Number of Receiver Threads — the higher the better (needs to be enough to generate suffi-

cient outstanding requests)

4. Number of Requests per Attempt — the lower the better (depending on whether arrival rate

characteristics are more important OR amount of load is more important)

46

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

Outstanding Issues

47

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

13 Documentation / Implementation Issues

This section contains a few things that could be improved in GEIST.

13.1 GEIST’s Trace generator

1. No perl scripts yet to convert HTTP logs into the same format as

generated by the trace generator.

2. Declaration of distribution variables -- Declaration is handled
properly, but the assignment of the type A=B where both A and B are

distributions is not implemented.

3. Order of arguments in GO statement: should the run-time really be
first? Also, should the warmpup really be implicit or explicitly

performed by the user.

4. All parameters should be specified in the trace generator input file

and then passed on to the traffic generator.

5. Service in the system queue needs to correctly handle not only the
file-serving part (which is okay) but also the overhead of executing

ASP scripts. Needs a careful reexaminination.

13.2 GEIST’s Traffic Generator

1. The method of receiving responses from the server can be improved as follows. Instead of
having a pool of several receiver threads all waiting on the open sockets, one (or a few)
listener thread(s) can be used to poll the open sockets for incoming data and then assign
receiver threads to these sockets. This will reduce the occupancy of the receiver threads
and also the number of outstanding threads at any given time. An initial implementation

of this technique is underway.
2. The documentation of the code really needs to be improved for readability.
3. It would be nice to be able to port the traffic generator to a Linux platform

4. Tt would be nice to add support for POST transactions and cookies (requires work on the

trace generator also).

48

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

References of Interest

49

The GEIST User Manual (by K. Kant, V. Tewari & R. lyer)

References

[1]

[10]

[11]

[12]

[13]

[14]

“An explanation of the SPECweb99 benchmark”, available at
www.specbench.org/osg/web99. (SPECweb96 information available at the TURL
www.specbench.org/osg/web96.)

P. Barford, and M. Crovella, “Generating Representative Web Workloads for Network and
Server Performance Evaluation”, Proceedings of the ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Systems, pp. 151-160, July 1998.

A. Feldmann, A.C. Gilbert and W. Willinger, “Data Networks as Cascades: Investigating
the multifractal nature of Internet WAN traffic”, Proc. 1998 ACM SIGCOMM, pp42-55.

K. Kant, “Introduction to Computer System Performance Evaluation”, McGraw Hill, 1992.

K. Kant, R. Iyer and P. Mohapatra, “Architectural Impact of Secure Socket Layer on Internet
Servers”, ICCD, Sept 2000.

K. Kant, V. Tewari, and R. Iyer, “Geist: A generator of e-commerce and internet server
traffic”, Proc. of ISPASS 2001, Nov 2001.

K. Kant, “On Aggregate Traffic Generation with Multifractal Properties”, proceedings of
GLOBECOM’99, Rio de Janeiro, Brazil, pp 1179-1183.

K. Kant and M. Venkatachelam, “Modeling traffic non-stationarity in e-commerce servers”,
Proc. of SPECTS 2002, San Deigo, CA, July 2002, pp 949-956.

K. Kant, M. Venkatachalam, “Transactional Characterization of Front-end e-commerce Traf-
fic”, Proc. of GLOBECOM 2002, Taipei, Taiwan, Nov 2002.

M. Krunz and A. Makowski, “A source model for VBR Video traffic based on M/G/oc0
Input”, Technical Report, Univ of Maryland.

W.E. Leland, M.S. Tagqu, W. Willinger and D.V. Wilson, “On the selfsimilar nature of
Ethernet traffic”, IEEE/ACM trans on networking, Vol 2, No 1, pp 1-15, Fen 1994.

Microsoft Web Application Stress Tool, msdn.microsoft.com/library/periodic/period00/

stresstool.htm

D. Mosberger and T. Jin, “HTTPPERF: Atool for measuring web server performance”,
Technical Report, HP Labs, 1998.

The OpenSSL Project, www.openssl.org, last accessed Nov. 2000.

50

