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Abstract—Distributed Machine Learning was originally investigated to solve a complex machine learning problem in a parallel way for
more efficient usage of computation resources. It also meets the requirements when the data are generated in a distributed way, such
as an edge computing environment, e.g., intelligent connected vehicles. In recent years, federated learning was further proposed to
perform training with a shared learning model, and parameter aggregation and privacy-preserving schemes. However, there are still a
lot of challenging issues in the collaborative machine learning. Some of them have been already considered by researchers, and most
of them are still open problems. To present a more clear technical road-map of the collaborative machine learning, we have performed
a comprehensive survey in this paper. The survey covers a broad of machine learning schemes in the collaborative scenarios,
including collaborative clustering, collaborative support vector machine, and federated learning (collaborative neural network).
Meanwhile, since collaborative learning is based on parameter exchanges during learning process, which brings privacy leakage
possibility and robustness issues in learning. In this survey, we especially pay attention on the current state of arts of privacy and
robustness in collaborative machine learning.

Index Terms—Collaborative Learning, Distributed Learning, Federated Learning, Privacy, Robustness.
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1 INTRODUCTION

Machine Learning (ML) has proved successful in numer-
ous applications including object recognition, autonomous
driving, stock prediction, and so on. Collaborative ML
involves multiple computing nodes in order to increase
computing resources, avoid unnecessary transfer of large
training datasets, and conduct training on datasets without
having to reveal them. Collaborative ML works as follows:
raw data are first collected at local sites and used to generate
local models (or submodels), which can be support vectors,
clusters, weight matrix in a neural network. The submodels
are then aggregated at a root node based on the nature of
the submodels and the aggregation approach.

Collaborative ML algorithms can be based on a variety
of learning schemes, which makes the aggregation models
challenging and ad hoc. For example, the support vector
machine (SVM) formalizes a problem to maximize soft
margin between support vectors, and can be transformed
as a quadratic programming (QP) problem. While a neural
network generates a non-linear model, the model is often
optimized by gradient descent. There are a lot of aggrega-
tion models and optimization methods designed separately
for each kind of collaborative learning method. They are
sometimes correlated and most of time designed separately.
However there needs a comprehensive survey covering
various types of collaborative learning models.

Several survey works have been performed trying to
summarize the related technologies on collaborative learn-
ing [1] [2] [3] [4] [5] [6] [7]. Reference [1] summarises
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approaches for combining predictions of a set of classifiers,
including decision rules, stacked generalization, and so
on. In [2], the methods related on collaborative classifier
learning, collaborative association rule mining, collaborative
clustering etc. are briefly summarized. A recent work in
[3] presents a comparison of distributed ML on mobile
devices. Reference [4] focuses on distributed deep neural
network, reference [5] explores communication structures
and optimization for distributed learning, and [7] describes
vertical and horizontal federated learning. Comparing with
the above surveys, our work pays more attentions on col-
laborative learning schemes, and robustness, privacy issues
during the collaborative procedure.

While collaborative learning offers many advantages
over centralized learning, it is also subject to various forms
of attacks. In particular, the worker nodes may be malicious
or untrustworthy or their communications with the root
node may be compromised by man-in-the-middle or other
types of communication attacks. Also, the privacy of the
data belonging to the worker node could be an issue [6].
Although these issues have been discussed in the literature
under various assumptions [8], [9], [10], [11], there is no inte-
grated methodology to consider various forms of robustness
challenges.

The purpose of this paper is to address these gaps.
We cover most of the popular collaborative ML algorithms
include collaborative clustering, collaborative SVM, collab-
orative decision tree and collaborative neural network (NN)
mode. We further discuss the type of aggregation in each
collaborative learning algorithm. On robustness, we provide
a taxonomy of various types of attacks, including data
poisoning attacks, model poisoning attacks, and black-box,
grey-box white-box attacks. Then we further discuss and
compare possible privacy-leakage and the corresponding
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protection methods.
The structure of the rest of the paper is as follows: section

2 gives a brief introduction to collaborative learning and its
applications; section 3 summarizes collaborative unsuper-
vised learning techniques, and section 4 compares collab-
orative supervised techniques. Sections 5 and 6 then sum-
marize research on robustness and privacy related issues,
respectively. Finally, section 7 discusses future challenges
and section 8 concludes the paper.

We first start this survey from the basic schemes for col-
laborative ML and its applications in the following section.

2 COLLABORATIVE LEARNING AND ITS APPLICA-
TIONS

2.1 Distributed/parallel Learning

Distributed and parallel learning was originally investi-
gated to simply make the learning faster by using either
model parallelism or data parallelism, as illustrated in Fig.
1. Model parallelism based learning separates the whole
learning model into several sub-parts, and performs model
training separately with the same dataset. While data par-
allelism based learning performs model training with dif-
ferent distributed datasets, and finally aggregates multiple

local models in a Root node. Distributed ML covers almost
full range of unsupervised learning and supervised learning
as shown in Table 1. In particular, it covers all the three
types of model integration, illustrated in Fig. 2. These are: (a)
Incremental Model Integration (IMI), where submodels are
integrated hierarchically, (b) Centralized Model Integration
(CMI), which represents one-step integration of all submod-
els, and (c) Fully Distributed Model Integration (FDMI),
where the integration follows some general acyclic graph,
meaning that certain submodels may be integrated along
multiple paths.

2.2 Federated Learning
Recently, more and more researches focus on Federated
Learning, which is based on a slave-master learning model
and more suitable for Neural Network.

Inspired by the collaborative scenario of ML, two re-
search scientists from Google proposed a new learning
framework in Google AI Blog 2017 [12], which is called
Federated Learning and illustrated in Fig. 3. The main as-
sumption of federated learning is that each worker agrees on
the same network model structure (neural network) which
can undergo local training and global aggregation. For local
training, each participating worker agent downloads the
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TABLE 1
Different Collaborative Learning

Type of Collaborative
Learning

Model
Integration

Unsupervised
Learning Supervised Learning

Clustering Linear Model SVM Decision Tree Neural
Network

Distributed Learning IMI, CMI, FDMI Yes Yes Yes Yes Yes

Federated Learning Mainly CMI / Yes / Yes Yes

Data 1

Data 2

Data 3

User 1

User 2

User 3Parameter Aggregation

Fig. 3. Structure of Federated Learning

parameters from the global (or root) server, initializes the
model, and performs model training with local data, until
certain accuracy is achieved. Then, each worker updates its
training results (e.g., weights in the neural network) to the
root server. The root server, which is chosen to do aggrega-
tion of parameters, computes updates to the parameters for
the next round of local training using certain aggregation
algorithm (e.g., averaging parameters from all agents).

2.3 Collaborative Learning

Distributed learning and federated learning target similar
research topics, however their coverage is different based
on our survey. Distributed learning covers most of ML
schemes, and while federated learning focuses on neural
networks mostly, even if similar functionality can be imple-
mented using a linear model and decision tree. Federated
learning studies typically consider privacy-preservation is-
sues during the collaborative learning procedure among
distributed nodes. To represent the integration of distributed
learning and federated learning, in this survey we use ter-
minology ”collaborative learning” during the discussions.

Here we assume a much more general model of collab-
orative learning involving a root agent (RA) seeking the
help of a number of worker agents (WAs) in performing
its task as illustrated in Fig. 4. The underlying assumption
is that each HA is an independent party and has its own
computing and storage resources to help with the training
and/or inferencing. In particular, each HA works with a
submodel, which may be either a part of the larger model
or the entire model itself.

In the simplest case, the submodel may be the entire
model – this corresponds to the federated learning situa-
tion, where the purpose of the distribution is to train the

Fig. 4. Illustration of Collaborative Learning

model on different data sets collaboratively without any
HA having to reveal its dataset. More generally, the RA
may partition the model into multiple submodels to be
trained or run by WAs by exploiting model parallelism
or data parallelism as shown in Fig. 1. The RA integrates
the results of these submodels using a higher level model,
which could range from a simple aggregation of submodel
results to being inputs to another ML model run by RA.
For instance, different submodels may focus on different
features or learning aspects which are then integrated by
the RL. A concrete example of this is where each submodel
recognizes a separate language in a multi-lingual document.
We assume that the integrative model is only known to the
RA and itself free from any vulnerabilities. However, we do
allow the model training to be iterative in that the RA may
provide feedback to the HA’s based on the last iteration, so
that they improve the model or the training. For example, in
federated learning, the RA updates the model and provides
it to all HA’s for further training.

2.4 Possible Applications
There are quit a lot of possible applications on collaborative
ML.

2.4.1 Edge Computing Empowered Applications
Collaborative ML is well suited for edge computing em-
powered applications because of the possibility of training
submodels at edge nodes in a privacy preserving way, and
possibly doing part of the inferencing at edge nodes for
quicker responses. Intelligent Connected Vehicle (ICV) is
one typical application for Edge Computing Empowered
Intelligence, where they can improve their situation aware-
ness by communicating with other nearby vehicles and with
the roadside unit (RSU). For example, the camera or LiDAR
(Light Detection and Ranging) collect the data around the
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vehicle, and then local data processing can better detect
and recognize objects on the road. Path planning [13] is
another capability well suited for the edge, and it concerns
finding the optimum path by analyzing the surrounding in-
formation obtained from other vehicles [14]. Path planning
typically uses deep reinforcement learning and deep neural
network, both of which can be quite heavy duty and thus
benefit from collaboration.

2.4.2 Health Monitoring
As the personalized health monitoring devices proliferate,
the data collected by them can be used to train federated
models for recognizing specific health risks [15] without
having to reveal the data or send it to a central entity.
Such devices can monitor one or more of important param-
eters such as heart rate, blood pressure, body temperature,
drowsiness, posture, breathing, etc. [16], and most retain
history for charting purposes. Such devices can pull in
personal health care records from clinics and hospitals and
thus can provide a rich source of data to train models
without information leakage.

2.4.3 Disaster Response
Natural disasters often lead to an inadequate, unstable
or overloaded communications infrastructure for multi-
ple reasons including physical damage to network or
power and high demand for communications. The com-
puting/communications hubs deployed to augment the net-
work capacity and coordinate rescue operations can be used
for training models based on locally collected data without
putting much stress on the overwhelmed network. In our
previous research [17], we have shown that the collaborative
spatial clustering can save data transmission time among
different areas, and yet achieve acceptable data analysis
accuracy.

3 COLLABORATIVE UNSUPERVISED LEARNING

The most popular unsupervised learning is clustering. Col-
laborative clustering works as follows: for each distributed
data processing node, it collects raw data from the sur-
rounding sensing devices and then performs clustering. The
procedure extracts representative points to generate several
local clusters for representation of the local data based on
different policies. The local clusters are then aggregated in a
root node.

Take DBSCAN as an instance [18], it is used to find
groups of points satisfying a specific condition, and is well
studied for distributed scheme based on density. In this
paper, we use DBSCAN to stimulate the discussion, and
other types of collaborative can be found in the Table 2.
A cluster from DBSCAN contains some minimum number
of objects (MinPts) within a circle with given radius (Eps).
The objects are selected as follows:
Directly density-reachable: An object A is directly density-
reachable from another object B if (1) A belongs to neighbor
objects of B within a radius Eps, and (2) the number of
neighbor objects of B is greater than a predefined value
MinPts.
Density-reachable: An object A is density-reachable to an-
other object B, by a chain of objects O1, ..., On, where
O1 = A, On = B if every Oi+1 is directly density-reachable
from Oi.

Then DBSCAN starts with an arbitrary core point A and
retrieves all points density-reachable from A to generate a
cluster.

3.1 Approaches for Collaborative Clustering
DBSCAN has been extended work in a distributed/parallel
way. In [19], DBDC (Density-Based Distributed Clustering)
proposes a parallel implementation of DBSCAN. It first
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clusters the data locally, and then it extracts aggregated
information about the locally created clusters and sends
this information to a central (root) node. At the root node,
a global cluster is reconstructed based on the aggregated
information. PartDBSCAN [20] uses a master-slave model
and adopts a dR-tree to balance the partition of data over
different slave nodes. The data in slave nodes are clustered
and separated, then results from the different slave nodes
are merged together to make a global cluster. Such an
approach can also be applied into other types of clustering,
e.g., grid-based clustering in [17].

Collaborative clustering has also been developed to
work in an edge computing environment as shown in [17],
where the raw data from each edge node is partially pro-
cessed locally and then local clusters and unprocessed raw
data are transmitted to its parent node. Data aggregation is
further performed at each edge node to integrate raw data
and the local clusters sent from its child node together to
generate a new local cluster, as shown in Fig. 6. An im-
portant research issue in collaborative clustering is to select
suitable policy to represent local cluster. Better selections
can achieve higher cluster accuracy while still reducing the
transmission data size as discussed next.

Global Clusters

End node

Data Aggregation

Local Clusters from
its Child NodesRaw Data

Fig. 6. Collaborative Clustering in Edge-Computing Environment

3.2 Policies for Representing Local Clusters
There are several policies to represent local clusters, by
using (1) the core points inside of a cluster, (2) the specific
core points, and (3) the boundary points in the clusters. The
most basic method is to represent a cluster by the points
inside of each cluster [20] [21] [22] [23], which can be seen
as core points in a region. For example, in DBSCAN, core
points are selected to represent a cluster if in a given radius
(EPs), at least a minimum number of points (MinPts) in the
cluster.

Specific core-points are the points selected from the core
points to further reduce the size of transmission data in
collaborative spatial clustering methods. In DBDC [19], the
ScorC is proposed as the complete set of specific core-points
satisfying the following two conditions: (1) any pair of
points in ScorC is not located within the Eps-neighborhood
of each other, and (2) for each core-point c there is at least
one specific-core point s that c is within Eps-neighborhood
of s. The set of points that represent the minimal set of core

points from a single cluster is used for data reduction in
[24] [25]. In their studies, eight points can represent the
core points of a grid cell for an arbitrary density. Specific
core points reduce the data size, however the accuracy of
clustering result can be decreased if the selections are not
suitable.

Another approach to represent local clusters is to use
boundary points as representative points as studied in [26],
[27]. The local dataset is clustered, and contours are found
for each local dataset once the local clusters are determined.
Then worker nodes exchange their contours with their
neighboring nodes and see whether there are overlapping
contours. Finally, global clusters are created based on merg-
ing of overlapping contours. The selection policy based on
boundary points can be seen as a compromise solution
between core points and specific core points, and the data
size is directly proportional to the size of the cluster.

4 COLLABORATIVE SUPERVISED LEARNING

Collaborative learning is more broadly investigated in the
context supervised (rather than unsupervised) learning. In
the following we discuss the popular collaborative schemes
including linear models, support vector machine, decision
tree and neural network.

4.1 Collaborative Linear Models
Linear regression and logistic regression are fundamental
methods in the linear model. Suppose that we have a
training dataset with d features x = (x1;x2; ...;xd), and xd is
the value of the vector x in the d dimension. A linear model
tries to learn the following linear hypothesis from the data:

f(x) = wT x+b (1)

while minimizing the square loss to find suitable setting of
(w∗, b∗) as follows,

(w∗, b∗) = min
m∑
i=1

(f(xi)−yi)2 (2)

where m represents the number of samples and yi is the
label for item s. Since this function is convex, the closed-
form solution can be computed as

w∗ = (XTX)−1XTy (3)

Current multi-party collaborative linear regression [28],
[29] mainly collect (XTX)−1 from the collaborating nodes,
and then aggregate them in a root node. The aggregation
can also be done in a distributed manner when adopting
gradient descent algorithm in ML [30]. In theory, Secure
multiparty computation can be used for privacy preservation
in data sharing, and homomorphic encryption can be used
to retain confidentiality of the data passed to collaborating
nodes; however, the practicality of these rather heavy-duty
mechanisms remains questionable.

4.2 Collaborative Support Vector Machine
In this subsection, first we briefly review the foundation of
SVM, and then discuss two types of collaborative schemes,
each with a different learning schemes.
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4.2.1 Foundation of Support Vector Machine (SVM)
The Support Vector Machine performs a binary classification
by finding a hyperplane to maximize the separation of a set
of samples into two groups. Given a set of training sample
data X = {xi, yi)|xi ∈ Rd}, where xi is a feature vector
for training the learning model and yi’s are the labels, the
problem can be formalised as follows,

min
w,b

f(w, b) =
1

2
‖w‖2+C

n∑
i=1

εi

s.t. yi(wT xi+b) ≥ 1−εi
εi ≥ 0

(4)

where b is the threshold, w is a weight vector, and C is a
regularization hyperparameter that determines the trade-off
between margin maximization and regularization, i.e., train-
ing error minimization. The above problem is intractable,
and generally it is reformed as a Quadratic Programming
(QP) problem as follows,

min
α

f(α) =
1

2
αTQα−αT 1

s.t. 0 ≤ α ≤ C
yTα = 0

(5)

where Qij = yiyjxixj , and α is a vector of Lagrangian
multiplier. The weight vector w has relation with α that
w =

∑n
i=1 αixi. Then the problem can be solved by solvers

for QP problem or Sequential Minimal Optimization (SMO)
which is more efficient with small size of α for each iteration.

There are two kinds of designs to extend centralized
SVM to a distributed manner: Type 1: parallel design of cen-
tralized SVM, and Type 2: collaborative SVM for distributed
data. Type 1 solutions decompose the whole dataset into
several subsets, and then process data in a parallel way to
speed up the learning procedure. Type 2 schemes are used
for dealing with data generated from distributed sensing
devices. We discuss these in the following.

4.2.2 Type 1: Parallel Designs of Centralized SVM
The basic idea of Type 1 is to separate the whole data set
and the problem into several subsets and subproblems, then
solve the subproblems separately, and finally integrate the
sub-results together. The purpose is to decrease computation
or space complexity to solve the QP problem in Eq. (5).

Cascade SVM [31]: Cascade SVM is a kind of multi-layer
approach. In the first layer, the data are split into subsets and
each one is evaluated individually for support vectors. The
results are combined two-by-two as a kind of ”reduction
tree” for the next layer. The resulting support vectors from
the last layer are transferred into the first layer, treated
together with the non-support vectors. It is proved that it
can converge to the global optimum because it keeps the
best set of support vectors produced in one layer, and uses
it in at least one of the subsets in the next layer in Cascade
architecture. For Cascade, only support vectors generated in
the current layer will be passed to the next layer [32].

Divide-and-Conquer SVM (DC-SVM) [33]: Similar
with Cascade SVM, DC-SVM also divides the whole data
into several small subsets and solves them independently.
More specifically, in divide step, DC-SVM divides the full
problem into smaller subproblems, which can be solved

independently and efficiently. For example, by dividing
the whole problem into k subproblems with equal sizes,
the time complexity for solving the subproblems can be
dramatically reduced to O(n2/k), while the computation
complexity of the original QP problem is at least O(n2).
Meanwhile, the space complexity is reduced to O(n2/k2)
from O(n2). After computing all the subproblems, an ap-
proximate solution for the whole problem is formed as
α = [α1, α2, ..., αk]. The paper shows that the difference
from the exact solution α∗ is bounded as follows:

0 ≤ f(α)−f(α∗) ≤ (1/2)C2D(ψ) (6)

where f(.) represent the objective function in Eq. (5), and
D(ψ) is calculated as follows

D(ψ) =
∑

i,j:ψ(xi)6=ψ(xj)

|K(xi, xj)| (7)

where ψ(xi) denotes the subset to which xi belongs. From
Eq. (7) we can see that the accuracy of DC-SVM depends on
the number of subsets k and how the data is divided among
them. A smaller k yields better accuracy but needs more
computation, since the computation complexity is O(n2/k).

Parallelizing SVM on Distributed Computers (PSVM)
[34]: PSVM further reduces memory use through a matrix
factorization. It loads only essential data in each machine to
perform parallel computation. Given n training instances
with d dimensions, PSVM first separates data and loads
the training data onto m machines. Next it performs a
parallel row-based Incomplete Cholesky Factorization (ICF)
on the loaded data, and stores only factorized matrix with p
dimension in each machine. Finally, PSVM performs parallel
Interior-Point method to solve the quadratic optimization
problem in Eq. (5).

PSVM reduces the memory requirement from O(n2) to
O(np/m), and decreases computation time to O(np2/m).
The prediction accuracy is evaluated experimentally by
setting p of PSVM to nt, and t is from 0.1 to 0.5, while the
accuracy can be close to 1 when setting t = 0.5. The accuracy
becomes poor with decreasing of t. However, PSVM uses
kernel matrix approximation based on ICF, which makes it
unfit for large datasets [35].

To exploit the potential of faster convergence, in recent
works [36] [35], QRSVM framework was proposed by imple-
menting QR decomposition into collaborative SVM. They
use kernel approximation technique, and present the low-
rank approximation of the kernel matrix in a separable
form for fitting to the distributed framework. They fur-
ther decompose the approximated kernel matrix using QR
factorization to achieve memory efficient representations.
The evaluation in [36] shows that QRSVM can converge in
around 2 minutes using 16 processors, while PSVM takes 20
minutes in the same setup.

4.2.3 Type 2: Collaborative SVM for Distributed Data

Type 2 considers a scenario that there are a lot of com-
putation nodes distributed in a specific area. They have
abilities of both collecting data and training on local data
to generate immediate data (e.g., local support vectors).
Several approaches are relevant in this case:
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Incremental approach: In [37] the authors implement
collaborative SVM to fit a distributed sensor network sys-
tem. They propose a Distributed Fixed-Partition algorithm
(DFP-SVM) where the separating hyperplane is obtained
through a sequence of incremental steps where each in-
cremental step takes place in a given cluster of sensor
nodes. More specifically, in each cluster of sensor nodes, the
sensing data are processed as the corresponding estimated
hyperplane (i.e., support vectors and offset), and then the
data are transferred to the next cluster. In the end node, the
estimated hyperplane are aggregated incrementally. Thus
the sensing data in the previous clusters can be compressed,
so that the transmission data size between the sensor nodes
can be reduced.

Fully-distributed Scenario: In [38], the authors employ
the concept of gossip-based incremental SVM with a geo-
metric representation. Through the join operation of con-
vex hulls from different distributed nodes, the proposed
algorithm can guarantee the convergence in a finite time
to the global solution. Reference [39] uses alternating direc-
tion method of multipliers (ADMoM), distributed training
algorithms. Such an approach is proved to converge to
the centralized SVM through consensus message exchanges
among neighboring nodes.

4.3 Collaborative Decision Tree

Decision tree is another popular supervised learning
method, which consists of nodes, branches and leaves. The
decision tree is learnt from the training data gradually,
and can classify a test data layer by layer from the root
node to a leaf node. The leaf node decides the classifica-
tion/regression result of the testing data, and the route from
the root node to the leave node represents the judgement
process based features of the data. Information Gain and
Gain Ratio can be used to select a feature when generating a
decision tree. The basic idea is to reduce impurity in a node.
In a distributed scenario, PLANET [40] uses MapReduce to
distribute and scale tree induction to very large dataset. For
a simplified description, each distributed node computes
sufficient statistics based on the local data, and then a root
node aggregates them from all the distributed workers in
the reduce procedure. Most works [40] [41] [42] adopt hor-
izontal partitioning, i.e., they partition the data. In contrast,
YGGDRASILl [43] adopts vertical partitioning based on the
features, i.e., each worker stores feature values for even
number of features, as well as the labels for the instances
for training.

With the development of federated learning, decision
tree also is redesigned for the federated platform [44] [45]
[46]. Reference [44] proposes federated forest algorithms
working for client and server, and the tree structure is stored
on the master node and every client. For each round of fed-
erated learning, each client selects best features based on the
local data, whereas the master node selects all the responses
from the clients and does aggregation. Then the master node
selects best features and notifies all the clients. In [45], the
authors propose FEDXGB for XGBoost (Extrme gradient
boosting) working in the federated learning framework.
FEDXGB follows the basic scheme of federated learning,
consisting of a set of workers and a root node. The workers

send gradients to the root node with homomorphic encryption,
and the root node interactively generate CART (Classifi-
cation and Regression Tree) by finding the optimal split
feature. Reference [46] also implements Gradient Boosting
Decision Tress (GBDTs) in federated learning framework.

4.4 Collaborative Neural Network (NN)
Since 1980s, neural networks have attracted a lot of attention
[47] and recent works [3], [4] have considered collaborative
neural networks extensively. Here we mainly focus on the
works based on federated learning framework as follows.

4.4.1 Learning Schemes of Federated Learning
Federated averaging is proposed and as a popular model
for model aggregation in collaborative NN, which can be
expressed as follows:

θ(i+1) = θ(i)+
1

n

n∑
j=1

θ
(i)
j (8)

where θ(i) is the parameters used in the ith round, n is
the number of workers in the ith round, θ(i)

j represents the
parameters updated by the jth user in the ith round. After
aggregation, the server distributes θ(i+1) to all workers for
the next round training. With the continuous training and
aggregation process, the procedure will stop when certain
global accuracy is achieved. To further reduce communi-
cation burden between a client and the aggregation server,
structured updates and sketched updates are proposed in [48] to
reduce the number of variables and compress them before
sending them out. Structured update modifies gradients in a
restricted space; they design two policies for it which are
enforce the update to be a low rank matrix and restrict
the update by a random sparse matrix. Sketched update first
computes full gradient matrix during local training and
then compresses it before sending to the root node. FSVRG
(Federated Stochastic Variance Reduced Gradient) was pro-
posed in [49] to be adaptive to different local data sizes
and different patterns of generated local data. The basic
idea of SVRG is to update the weights based on variance
of gradients during the iteration, while FSVRG implements
SVRG in the federated learning scheme.

Recent works have shown that, federated learning can
converge after several iterations [50] [51], although the it-
erations among local and global learning nodes consume
much more time [52]. Federated learning can be used in
many different scenarios, such as credit rating and smart
medical health [7]. WeBank and TensorFlow have proposed
their own development framework called FATE and Tensor-
Flow Federated and many researchers are interested in its
application in more scenarios, such as resource-restrained
IOT devices [53] [52] [54] [55], Non-IID data [50] [56] [57]
[58].

Although federated learning is good for privacy-
preserving services, privacy leakage is possible during the
learning procedure, which we address in Section 6.

4.4.2 Resource Constrained Learning
Since federated learning often works in resource-
constrained devices under uncertain network environment,
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system optimization becomes a critical research topic. There
are mainly two approaches to address this.
• System Optimization: Here the usage of communica-

tion and computation resources is integrated with the
federated learning procedure so as to balance predic-
tion accuracy against resource usage. In [59], optimiza-
tion problem FEDL was proposed by formulating feder-
ated learning over wireless network as an optimization
problem, and then solved by problem decomposition.
Reference [60] proposed to optimize wireless resources
and ML based on device selection and receiver beam-
forming design. The research in [61] further adaptively
controls the communication between clients and server
to balance the learning accuracy and communication,
and the research in [62] optimizes computation offload-
ing in federated learning systems. Also federated learn-
ing is adopted in mobile edge computing environment
for optimal computing, caching and communication
[63]. System optimization also is considered in Geo-
Distributed ML in [64].

• Gradient Quantization: Gradient quantization uses
low-precision values to reduce the communication
bandwidth in federated learning. In [65], they proposed
1-bit stochastic gradient decent for speech application
which can achieve 10x speedup. In [66] random quan-
tization was used to balance the accuracy and gradient
compression. TernGrad [67] further use three-level gra-
dients for quantization.

• Gradient Sparsification: Reference [68] randomly
drops coordinates of the stochastic gradient vectors and
amplifies the remaining coordinates appropriately to
ensure the sparsified gradient. Reference [69] shows
that almost 99.9% of the gradient exchange in dis-
tributed SGD are redundant. Based on this, it pro-
poses Deep Gradient Compression (DGC) to greatly
reduce the communication bandwidth. [70] uses Layer
Normalization to reduce communication in distributed
deep learning.

4.4.3 Coordination Across Workers

In collaborative ML, the Root node may integrate the mod-
els trained in multiple ways. Bulk Synchronous Parallelism
(BSP), as a classical parallel algorithm, has been widely used
in collaborative ML [82]. In BSP, the Root node aggregates
parameters from worker nodes, generates a global model,
and then sends it to all workers every iteration. However,
the if the worker nodes take largely different amounts
of time return the response or the communication delays
are highly variable, such synchronized approach may be
inappropriate. Asynchronous Parallelism (ASP) is the op-
posite approach where every worker sends its local train-
ing parameters to the root node at each iteration without
waiting for others. Thus slower workers may send stale
parameters to the Root node, and therefore ASP cannot
guarantee the model convergence [83]. Stale Synchronous
Parallelism (SSP) is a balanced solution between BSP and
ASP. SSP restricts the number of iterations between the
fastest worker and the slowest worker under a threshold
setting in advance [84]. It can reduce the influence of slower
workers effectively but the threshold is difficult to set. In

order to improve the performance of SSP, Zhao et al. [85]
proposed a dynamic SSP (DSSP) method. They use a range
of staleness thresholds to determine the number of iterations
dynamically. The experiment shows that DSSP are more
stable and converges faster than SSP. Shi et al. [86] propose
a free SSP (FSSP) strategy to reduce the influence of slow
workers. This strategy distinguishes the stragglers which
have low efficiency in the entire training process through
a penalty mechanism. Persistent stragglers are excluded
from the subsequent process to improve the efficiency. The
experiment shows that FSSP is 1.5-12 times faster than BSP
and SSP.

A summary of discussions in Section 3 and 4 is shown in
Table 2.

5 ROBUSTNESS OF COLLABORATIVE ML
Robustness of collaborative ML (ML) has been discussed
widely in recent literature, mostly in the context of federated
learning [8], [9], [10], [11].

In general, a ML submodel has four important attributes
that may or may not be shared (in addition to the basic API
for using the submodel, which we assume is always shared).
These are shown in Fig. 7 and explained in the following:
• Submodel Capabilities: Specifies what nuances of the real

world (e.g., variations, imperfections, or irregularities
in the objects, features, or ambient conditions) that the
model can discriminate. These could be either private
to the HA (possibly because HA owns the model), or
shared between HA and RA. In the latter case, these
could be either provided by the RA to HA as require-
ments for a private model built by HA, or voluntarily
shared by HA with RA.

• Submodel Structure: Specifies low level details of the
submodel. For example, in case of a decision tree, the
structure consists of the entire tree, and in case of a
CNN, all of the layers and weights are part of the
structure. The structure could either be private to the
HA, made visible to RA by HA, or modifiable by RA.
In the second case, HA simply builds and trains the
model, and then submits it to RA for validation. In
the third case, the RA is able to modify the received
submodel further and sends it back to WAs for further
training. The finalized model may be retained by WAs
for the purposes of running it on HA’s computing
infrastructure.

• Submodel Training data: The ability of a HA to train
the model for RA without revealing the training data
forms the fundamental motivation for the federated
ML. However, since the training of a DNN is often an
extremely compute and data intensive task, training by
HA can be valuable even if there is no prohibition on
sharing the training data.

• Submodel Test data: In all cases of distributed ML, we as-
sume that the RA will not accept a submodel (or results
thereof) unless it can pass a specified set of tests on a
challenge dataset provided by the RA. If the submodel
structure is shared by HA (i.e., a trained submodel
delivered by HA to RA), the test data will likely be kept
private by the RA. However, it is also possible that the
RA provides this data to HA and expects the test results
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TABLE 2
Researches on Collaborative Learning

Types of ML Collaborative Learning
Collaborative
Model

Remarks

Clustering

Density-based

DBDC [19] [71] (b) Local Specific Core-points
PartDBSCAN [20] (b) R-Tree/Core points
Mr-DBSCAN [22] (b) Core Points/Map-Reduce
Grid-Based [17] (a) Local Specific Core-points
Boundary-based [26] [27] (b) Boundary-based Aggregation
DENCAST [72] (b) Multi-target regression

Partition-based
PK-Means [73] (b) Message-passing based clustering
Privacy-preserving PK-Means [74] / Privacy-preserving

Linear Model
Secure Linear Regression [28] (b) Semi-trusted third party
Privacy-preserving Linear Regression [29] (b) Secure multi-party computation
Secure Logistic Regression [30] (b) Homomorphic encryption

SVM

Parallel-based

Cascade SVM [31] (a) Binary Cascade architecture
DC-SVM [33] (b) Divde and Conquer O(n2/k)

PSVM [34] (b) O(np2/m)

QRSVM [35] [36] (b) QR decomposition

Distribution-based:
DFP-SVM [37] (a) Incremental based Aggregation
Gossip-based [38] (c) Fully-dsitributed
ADMoM [39] (c) Fully-dsitributed

Collaborative
Decision Tree

Distributed

Privacy-DDT [75] (b) Homomorphic encryption
Distributed decision tree v. 2.0 [41] (a) Build a DT with Multiple Splits
YGGDRASIL [43] / Deal with compressed data
PLANET [40] (b) Map-reduce
DT for Robust Regression [42] (b) Robustness
Inprivate digging [76] (a) Differential privacy

Federated
Federated Boosting [75] (b) Relaxed privacy constraints
Federated Forest [44] (b) Proposed algorithms at client and master sites
Federated Gradient Boosting [46] (b) Security

Collaborative
Neural Network

Model Aggregation

FedAvg [77]

(b)

Averaging
F-Updates [48] Structure/Sketched updates
FSVRG [49] Adaptive to local data
Federated
Meta-Learning [78]

Reduce Communication Cost
and Fast Convergence

Federated matched averaging [79] Matching and averaging hidden elements
Agnostic federated Learning [80] Not biased towards different clients
Agnostic meta Learning [81] Global model to be personalized for one client

System Optimization

FEDL [59] Wireless Optimization
In-Edge AI [63] Optimization based on FL
FL-Wireless [60] Wireless
FL-Control [61] Adaptive control of communication
FL-Offloading [62] Computation Offloading Optimization
Geo-FL [64] Geo-Distributed ML

Gradient
Quantization

1-bit SGD [65] Speech recognition
QSGD [66] Random quantization
TernGrad [67] Three-level gradients

Gradient
Sparsification

GS [68] Random Drop-out
DGS [69] 99% of distribued SGD is redundant
SDGD [70] Layer Normalization

Synchronization

BSP [82] Bulk Synchronous Parallelism
ASP [83] Asynchronous Parallelism
SSP [84] Stale Synchronous Parallelism
DSSP [85] Determine iteration dynamically
FSSP [86] Reduce the influence from slow workers
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Fig. 7. Illustration of Submodel parameters

back. (According to our assumption, the HA provides
the test results truthfully in this case).

The new robustness issue in this model is that a few
of the WAs may be malicious or untrustworthy or their
communications with the RA may be compromised by
man-in-the-middle or other types of communication at-
tacks. While the communication vulnerabilities can be ad-
dressed using standard techniques (e.g., message encryption
and authentication of WAs), the insider attacks by mali-
cious/compromised WAs can be much more difficult to
tackle.

5.1 SubModel Information Exchange Modes
The model in Fig. 4 admits different scenarios in terms of
information exchange between the RA and WAs and the
corresponding vulnerabilities. The vulnerability depends
on severals aspects including (a) the extent of data/model
sharing among RA and WAs and the attacks enabled by
this sharing, (b) the attacker capabilities (i.e., level of mali-
ciousness assumed for WAs), (c) the possibility of collusion
among WAs, and (d) validation or compromise detection
capabilities of the RA. This leads to a large number of
potential scenarios, each of which is further distinguished
by the nature and parameters of the ML models used by the
WAs. Due to the large state space, in the following we only
sketch a possible taxonomy of situations and the types of
attacks that it may admit. A part of the taxonomy is shown
in Fig 7. Here, we assume that if HA and RA explicitly stated
to share some information or specification, that sharing is
considered as a ”contract” and remains uncompromised.

Fig. 7 points to many specific scenarios, and the corre-
sponding vulnerabilities. Consider, for example, the case
where all 4 items are shared between RA and HA. This
corresponds to the situation where the RA provides the
requirements to the HA, according to which the HA builds,
trains, tests, and then delivers the final submodel to the RA
that satisfies all the validation tests. In this case, one poten-
tial vulnerability pertains to the specification of capabilities
by RA. A bad HA can take advantage of this knowledge
and train the submodel on some additional data that only
affects aspects of the model not covered by the ”contract”
(or specification of capabilities by RA). The knowledge of
validation tests also helps in that it can ensure that all

tests still pass. Note that less sharing by RA makes the
job difficult for both good and bad WAs. For example, if
the RA does not share the submodel capabilities or the test
data with HA, a bad HA does not know how to train the
model on bad data without the compromise being revealed.
By the same token, a good HA will also have difficulty in
meeting the expectations of the RA. In contrast, less sharing
by HA (with RA) provides greater opportunities for bad HA
to perturb the model or the results. For example, if an HA
does not share its training data with RA, a bad HA is free to
train the model on anything so long as the model provides
reasonable results on the validation tests.

Collusion among bad WAs can further amplify the
perturbation to the model. In particular, colluding HA’s
can stagger their spurious output submission in a way to
minimize detection. For example, in the case of the same
submodel trained by different WAs, a set of bad HA’s could
supply trained weights to the RA in succession in a way
that no improvement takes place over successive training
iterations. With identical submodels, it might be possible
for the RA to detect such collusion using Byzantine fault
principles, i.e., when no more than t out of a total of 3t+1
WAs are bad.

5.2 SubModel Information Exchange vs. Attack Modes
Fig. 7 allows for 16 different scenarios of sharing, each of
which can be exploited by a bad HA to carry out various
forms of perturbation either during training time or run-
time. Most of the attack modes are known in the literature
under different names, as discussed below. Reference [87]
presents a taxonomy of these modes and comprehensively
discusses the papers focusing on these modes. These basic
modes can be related to the 16 different possibilities in
Fig. 7 in terms of level of visibility (blackbox, greybox and
whitebox attacks).

Given the indirect relationship between training data
and the model parameters (e.g., weights in CNN) and the
need for a large amount of data for training, the model can
be perturbed by strategically providing bad data at training
time. These could take several forms. A data poisoning attack
changes the labels on some of the valid data items to force
misclassification in certain cases. An Evasion attack takes
advantage of the fact that the model may have weak points
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which can be exploited, i.e., inability to correctly recognize
certain features, which are then added deliberately to the
inputs at inference time. If the attacker can, it may enhance
or create this weakness deliberately by withholding certain
training data. Note that a simple form of evasion might
may only increase the classification uncertainty which can
be achieved by withholding some training data or adding
what amounts to noise to the data. Backdoor attacks intelli-
gently add extraneous data that makes the model generate
anomalous output under certain scenarios. These scenarios
are then triggered at inference time by tampering with the
input. The backdoor attack is particularly insidious when
the data obtained during inference time comes directly from
items in the physical world that can be easily tampered with.
For example, if a special physical pattern (e.g., a bar code)
on the rear of a car is the backdoor, all that the adversary
has to do is to paste that pattern on the rear of some cars
(including the car(s) belonging to the adversary). This could
make the car just behind it misbehave (e.g., driving too
close or crashing into it). The same applies to manipulating
physical traffic signs, such as forcing a low-speed limit sign
to something that indicates a much higher speed limit.

Model poisoning attack concerns changing the output of
the model (either using poisoned data or in some other
way), so as to force misclassification. Model poisoning
happens if training involves iteration; i.e., the RA collects
models or model outputs from multiple HA’s and uses
them to provide feedback to the WAs. For example, if the
feedback that depends on the output of one bad HA goes
to all the WAs for the next iteration, the entire model gets
corrupted or poisoned. Reference [8] discusses several such
attack strategies including targeted model poisoning using
boosting of the malicious agent’s update to overcome the ef-
fects of other agents. They also show that Byzantine-resilient
aggregation strategies are not robust to these attacks.

Yet another type of attack is model stealing attack, where
an HA is able to deduce the submodel belonging to another
HA even though there is no direct revelation of other HA’s
submodels. The source of this attack is the feedback by RA
that includes feedback based on other submodels.

With respect to Fig. 7, it is clear that various attacks
are enabled by two aspects of the system: (a) Sharing of
information by RA with bad WAs, and (b) Ability of a bad
HA to do things beyond the contract (e.g., training with
extraneous data).

5.3 Data Poisoning Attacks

Poisoning attacks were first proposed for faking the biomet-
ric recognition system. In [88], [89] the authors have dis-
cussed how such attacks can gradually poison the template
gallery to successfully mislead a template self-update based
face-verification system. In template self-update based face-
verification system, a template corresponding to each client
is stored by averaging a set of n enrolled images, which is
referred to as centroid. If the feature vectors corresponding
to client c are {xc1, xc2, . . . , xcn}, then their centroid is
xc =

∑n
k=1 xck

n . When a user submits a sample x, a matching
score s(x, xc) is computed as:

s(x, xc) = 1/(1+||x−xc||) (9)

where ||.|| is denotes the Euclidean distance. If the matching
score is greater than a certain threshold tc, the sample is
accepted as genuine, otherwise it is rejected. To update the
centroid over time, the authors have discussed two policies:
First, is the infinite window policy, where the centroid xc is
updated without discarding any of the past samples, and
the second policy is finite window where the samples in the
last n iterations are only considered for centroid calculation.

Template self-update is implemented to deal with tem-
poral changes of biometric patterns, such as aging. The self-
update is accepted if s(x, xc) > θc, where θc is the update
threshold and is generally greater than the matching thresh-
old tc. By exploiting this self-update feature, the poisoning
attack injects specifically targeted samples that are accepted
by the system as normal, and push the centroid xc in the
direction of the attack point xa. The authors in [88] have
studied that in the infinite window scenario, the number
of attack samples must grow exponentially with ||xa−xc||,
whereas in case of finite window the number of samples
must grow linearly. Thus the latter is more vulnerable to
poisoning attack as compared to the former scenario. Poi-
soning attacks are also studied for anomaly detection in [90],
[91].

In [92] the authors have shown that by applying an
imperceptible non-random perturbation to a test image
(which are termed as adversarial examples), it is possible to
fool a DNN to arbitrarily change the network’s prediction.
In [93] the authors have argued that the primary cause
for such vulnerability to adversarial perturbation is their
linear nature. Similar poisoning attacks on support vector
machines are studied in [94], [95]. In [96] the authors have
shown that by injecting around 50 dirty-label samples, a
backdoor adversary can achieve an attack success rate of
above 90%.

In [97] the authors have discussed data poisoning attacks
on neural networks using direct gradient methods. They
have also proposed a generative method to speed up the
generation of poisoning data by using the inspiration from
Generative Adversarial Network (GAN), and have shown
that the generative method speeds up the poisoned data
generation by 239.38 times as compared to the direct gra-
dient method. In [98] the authors have proposed a back-
gradient optimization to launch poisoning attacks on neural
networks and deep learning architectures, which is more
computationally efficient than gradient-based poisoning at-
tacks. In [99] the authors have studied poisoning attacks on
federated learning system based on GAN, where an attacker
can stealthily trains a GAN to mimic the prototypical sam-
ples of the other workers. The GAN can then be controlled
for generating the poisoning updates.

5.4 Model Poisoning Attacks

Several types of model poisioning attacks are possible in
Fig. 4. In the outsourced training attack, the RA wants to
train the parameters of a DNN FΘ (where Θ represents the
function’s parameters), using a training dataset Dtrain. The
HA trains the model and returns the trained parameters Θ′.
The RA checks the accuracy of the trained model FΘ′ on a
(labeled) validation dataset Dvalid, and will only accept the
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model if the accuracy of the model is more then a certain
threshold a∗, i.e.

A(FΘ′ , Dvalid) ≥ a∗ (10)
In this case, the HA can return a maliciously backdoored
model such that, (a) the returned model does not reduce the
classification accuracy of the validation set, and (b) for cer-
tain inputs containing the backdoor trigger, the prediction of
the outputs are different from the prediction of the honestly
trained model. The backdoor trigger could be either explicit
thereby requiring perturbation of real data to exploit the
backdoor (e.g., by infecting some queries), or it could be
implicit: the model produces bad output on certain types
of data that the attacker believes would not be a part of
test data. Even if the model fails verification, but the RA
is willing to let the HA “fix” the problem, it provides a
mechanism for the malicious HA to check what kind of
backdoor to not use.

In [10] the authors have studied similar poisoning at-
tacks in collaborative learning settings where different users
submit the masked features to a central classifier to learn the
global model. They have shown that in such a setting, just by
poisoning 10% of the training data, the attacker can achieve
mis-classification with a success rate of 99%. In [100] the
authors have developed a model poisoning attack where the
malicious worker can use model replacement to introduce
backdoor functionality. The authors have shown that such
model replacement attack greatly outperforms the conven-
tional data poisoning attack.

Reference [11] shows that the success rate of model
poisoning increases linearly with the number of poisoned
samples and number of attackers. The paper also proposes
a filtering defense based on the distance between model
updates by honest and malicious agents. Reference [101]
discusses a variant of model poisoning attack, called data
contamination attack, that uses data specifically to learn un-
desired correlations. For example, a model to determine if a
credit card application should be accepted could maliciously
discriminate against applicants of certain characteristics.
The paper shows that adversarial training can mitigate such
attacks. Another variant is a form of sybil attack discussed
in [102] where the a malicious agent mimics the actions
of a legitimate agent but alters the training data to force
misclassification.

5.5 Blackbox, Greybox and Whitebox Attacks

Adversarial ML is often broadly categorized into black-box,
grey-box and white-box attacks [103], based on whether the
attacker respectively has zero, partial and full knowledge
about the ground truth and the learning mechanism. The
zero knowledge situation is known as Blackbox, the knowl-
edge of both the learning mechanism and the ground truth
is known as Whitebox and the knowledge of one of these is
known as Greybox. A Greybox characterization is not very
useful unless the the extent of knowledge is quantified, as is
done in our model in Fig. 7. Note that anything that a HA
can keep private could potentially be altered by it, possibly
maliciously. Even in case of visibility, it is possible that what
is shared is not what is used, but we generally assume that
there are no contractual violations (e.g., if RA and HA agree

to use certain data for training, it is indeed used), since
otherwise a classification is not very meaningful.

In [104] the authors have studied black-box and white-
box threat models on MNIST and CIFAR-10 datasets in
the context of image classification. They have studied the
existing detection techniques for these two threat models
and have shown how to choose good attacker loss func-
tion for each defense. In [105] the authors have discussed
the interaction between an adversary and deep learning
model as a two-player sequential non-cooperative Stackel-
berg game, with the assumption that the adversary does
not know anything about the network structure. In this
game, the learner learns the weights of a CNN for a correct
classification and the adversary creates new instances of
data using genetic operations for mislead the classification.
The game is solved by the Nash equilibrium, which leads
to solutions that are robust to subsequent adversarial data
manipulations. In [106] the authors have introduced black-
box attacks against DNN classifiers where the only capacity
of the attacker is to observe labels assigned by the DNN
for the chosen inputs, and have shown that the DNN mis-
classifies 84.24% of the adversarial inputs. Reference [107]
has developed generalized black-box attacks by exploiting
adversarial sample transferability on a broad classes of ML
classifiers, including neural networks, logistic regression,
support vector machines, decision trees, nearest neighbors,
and ensembles. In [108] the authors have proposed a broad
class of momentum iterative gradient-based methods to boost
the success rates of the generated adversarial examples,
and have shown that their iterative methods exhibit higher
success rates in both white-box and black-box attacks.

Reference [109] has discussed a general attack algorithm
named Robust Physical Perturbations (RP2) to generate ad-
versarial perturbations under white-box settings, and have
shown that RP2 achieves high target misclassification. The
authors have shown that their attacks cause a standard road
sign classifier to interpret a slightly modified Stop sign as a
Speed Limit 45 sign.

In [110] the authors have used the concept of “defensive
distillation” as a defensive mechanism against adversarial
samples, by reducing the amplitude of neural network gra-
dients that are generally exploited by the adversaries to craft
adversarial samples. The authors have empirically studied
that such defensive distillation reduces the attack success
rate from 95% to less than 0.5% on the MNIST dataset.
However, in [111] the authors have created a set of white-
box attacks that successfully find adversarial examples for
100% of images on defensively distilled networks. Refer-
ence [112] has discussed a class of algorithms for adversarial
sample creation against any feed-forward DNN with the as-
sumption that the adversary has knowledge of the network
architecture and its parameter values. They have shown that
by modifying only 4.02% of the input features per sample,
their algorithms can misclassify specific targets with a 97%
adversarial success rate. Other white box attacks are also
studied in [113], [114], [115], [116]. Adversarial robustness
of neural networks against both black-box and white-box
attacks are discussed in [117]. A summary of representative
attackers are discussed in Table 3.
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TABLE 3
A Summary of Representative Attacks

Attack Types Details Representative Works Attacker’s knowledge Use cases

Data Poisoning
attacks

Attacker changes the labels on
some of the valid data items to
force misclassification

Reference [88] Perfect knowledge Template self-
update/face verifi-
cation

Reference [89] Limited knowledge Face verification
Reference [90] Zero knowledge Classification
Reference [91] Full/limited control

over training data
Anomaly detection

Reference [92] Limited knowledge Image classification
Reference [94] Perfect knowledge Image classification
Adversarial label flips attack [95] Perfect knowledge Binary classification
Backdoor attacks [96] Zero knowledge Image classification
Generative Poisoning Attack [97] Perfect knowledge Image classification
Back-gradient optimization [98] Perfect/limited knowl-

edge
Spam filtering, malware
detection, handwritten
digit recognition

Generative Adversarial Nets [99] Perfect/limited knowl-
edge

Image classification

Reference [104] Perfect/zero knowl-
edge

Image classification

Model Poisoning
attacks

Attacker changes the model
output to force misclassification

Reference [10] Limited knowledge Image/traffic sign clas-
sification

Reference [100] Limited knowledge Image classification
Reference [101] Limited knowledge Multi-party environ-

ment
Reference [102] Limited knowledge Image classification

Black box
attacks

Attacker has zero knowledge
about the ground truth
sand the learning mechanism

Reference [104] Zero/limited
knowledge

Image classification

Reference [105] Zero knowledge Image classification
Reference [106] Zero knowledge Image classification
Reference [107] No knowledge Image classification
Momentum iterative gradient-
based methods [108]

No knowledge Image classification

White box
attacks

Attacker has full knowledge
about the learning mechanism
and the ground truth

Reference [104] Perfect knowledge Image classification
Robust Physical Perturbations [109] Perfect knowledge Road sign/image classi-

fication
Reference [111] Perfect knowledge Image classification
Reference [112] Perfect knowledge Image classification
Reference [114] Limited/Perfect knowl-

edge
Malware detection

Reference [115] Perfect knowledge Image classification
Reference [116] Perfect knowledge Image classification

6 PRIVACY ISSUES IN COLLABORATIVE ML

In addition to the possible attacks on collaborative ML, there
are also vulnerabilities with respect to privacy. Recall that
the key motivation for federated learning is to maintain
privacy of local data; however, even in this case the data
privacy could be compromised. There are three main types
of attack in federated learning, which are membership in-
ference, unintended Feature Inference, and representative
sample reconstruction. In this section, we first introduce
these three privacy attacks, and the discuss current solutions
trying to solve them.

6.1 Membership Inference

The goal of membership inference is to infer if certain data
set was used in the training. Take document survey as an
example, the adversary who plans a membership inference
attack, wishes to confirm whether an individual participated
in the survey [118].

In [119], Shorti et. al. proposed a framework for mem-
bership inference in a centralized learning scenario, and
it worked extremely well even in the public ML service
like Google and Amazon. For the convolutional neural
network which uses softmax function in the final layer for
classification, the value in each dimension from the softmax
function can represent the probability that the input belongs
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to that category. The training continuously reduces the gap
between the hypothesized function and the obtained results,
which makes the probability for privacy leakage higher and
higher. This phenomenon is called model confidence, and they
define higher confidence as the higher probability bias in the
right dimension compared to the other wrong dimension.
The authors found that the samples in the training set have
much higher model confidence than others which did not
join the training procedure, and thus the model confidence
can be a possible reason for membership inference.

Therefore, when an attacker has samples similar to that
of the victim user, they can use those samples to construct a
similar model with the same training and network structure.
The author uses three kinds of methods to construct the
victim users’s fake dataset, and the membership inference
attack shows excellent performance with different dataset
and network structure.

However, the reason of the successful attack is still not
so clear. Many researchers think that it happens because the
neural network is over-fitted. In fact, with the early stop and
regularization, the attack in the previous work [119] performs
worse, but still works better than the baseline of random
guess. So the extension of this topic can be divided into two
approaches: one is to figure out the relationship between
over-fitting and membership inference attack, and the other
is to extend the membership inference in different scenarios.
For the first approach, Song et. al. investigated the over-
fitting scenario by simulating a malicious ML provider, who
provides ML algorithms for other users as services [120].
They evaluated memorizing users’ data by a ML algorithm
in both white-box and black-box cases. Especially, in the
black-box case, the model was trained by extending the
training dataset with additional synthetic data, and during
the experiment they found the model finally over-fitted the
synthetic data, and could be one reason for privacy-leakage.
Leino, Yeom et. al. have also investigated this problem
in [121] [122]. Authors in [121] evaluated over-fitting and
privacy-leakage quantitatively by targeting on membership
inference and attribute inference. They found over-fitting is
a sufficient but not a necessary condition for membership
inference, since the model still can be attacked in a stable
training algorithm (i.e., one that does not over-fit) while
attribute inference is more sensitive to over-fitting.

For the second approach, Long et. al. analyzed the
association between generalization and membership infer-
ence in [118], and found that the participation of different
sample data results in different models. Thus the success
of membership inference may be caused by some unique
influence due to the participation of different samples.
In 2019, Nasr, et.al. [123] proposed a new framework for
membership inference attack based on federated learning,
considering over-fitting. They pointed out that in the later
stages of federated learning, there’s a phenomenon that the
testing samples’ gradients are always greater than that of
the training samples. Therefore, they extend the input of
classifier in [119], take the gradients in each layer of neural
network into consideration, and shows the accuracy of the
attack can reach to 80%.

The membership inference in federated learning scenario
is still a new area of exploration, and generalized attack
scenarios and their systematic analysis are still lacking.

6.2 Unintended Feature Inference
In an Unintended Feature Inference attack, the attacker’s
goal is to deduce features that are irrelevant for the the
trained prediction model. For example, a convolutional
neural network to do face recognition can grasp some un-
intended features of the dataset such as whether a specific
person in the training dataset wears a pair of glasses. For a
gender classification model, the attacker may be interested
in some unintended features such as the race information in
the training set.

Song et al. proposed this interesting attack in collab-
orative learning and federated learning scenario [124]. To
attack successfully, an attacker needs to generate a classifier
by training with two kinds of data. One of them has the
feature the attacker wants to infer, while the other does
not. In the federated learning procedure, in each upload
episode the workers need to download the parameters and
then upload the new parameters after training with their
own dataset. The uploaded parameters for the above two
different datasets will be different. Therefore, attackers can
download the parameters for each round, and then obtain
two kinds of models, one that is trained by the data has the
feature he wants to infer, whereas the other one does not.
Collecting certain amount of different gradients and label-
ing them, the attacker can train a classifier to distinguish
whether the parameters uploaded by a victim-user have the
features or not. Although the attack has some limitations,
it still performs successfully in some specific scenarios, and
remains an interesting threat in federated learning.

6.3 Representative Sample Reconstruction
In a representative sample reconstruction attack, the adver-
sary’s goal is to attack a certain federated learning worker
by extracting the characteristics in the training sample. It
can be seen as a shadow of the training sample, which looks
similar and consists of main representative information of
the training sample, called representative sample.

Representative sample reconstruction attack is generally
performed through two approaches: one by applying Gen-
erative Adversarial Nets (GANs) in the federated learning,
and the other by completely reconstructing the trained
model. This attack leads to direct privacy exploitation, since
the similarity of user’s data can expose a lot of informa-
tion. A representative sample consisting of characteristics of
workers’ data can be used to perform poisoning attack [9],
which could also substantially harm the global accuracy of
federated learning.

In 2017, Hitaj et al. proposed the first representative sam-
ple reconstruction framework in federated learning [125].
This attack needs to be performed in a classifier model
training scenario, such as CNN. For example, consider a
CNN for the recognition of hand-written digits. The tradi-
tional model here has an output vector in 10 dimensions. An
attacker can add a new dimension into the output vector
and thereby completely control the structure of federated
learning. This reconstructed model will be seen as the global
training model. The attacker then creates two models with
the same structure at the same time, one is called global
model for parameters update, and the other is called local
model for attacking. During the new round for parameter
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update in the federated learning, the attacker will download
the parameters updated by the victim-user to initialize his
local model, and download the parameters from server to
initialize his global model, after that, he will use the local model
as Discriminator of GAN, and update his Generator with the
following equation:

min
θG

n∑
i=1

log(1−f(G(xi; θG); θD)) (11)

where θG and θD stand for the parameters of Generator and
the Discriminator respectively, functions G and f denote the
outputs of the Generator (the fake sample) and Discriminator
in the dimension corresponding to the input’s label. Finally
n represents the number of samples that the Generator gen-
erated.

Generator

Discriminator Real/False
Real Data

Noise

Backpropagation

Fig. 8. Illustration of GANs

Fig. 8 shows the generic way that GANs operate. It
involves two models, one is Discriminator and the other Gen-
erator. Discriminator is based on discriminative model, which
is trained based on sample data (real data). While Generator
follows generative model, which generates observation data
based on some hidden information as input data. In GAN,
Generator generates a sample data based on a given noise,
and then Discriminator judges whether the input data is
real or false. Two models are trained iteratively through
back-propagation. The attacker uses the generated sample
data and changes its label to the final class (i.e. the 11th
class), adds it to the training set of the global model, and
finally trains a model that can recognize victim’s dataset as
wrong. The attacker also updates its parameter to the global
model for combination. With successive rounds, the victim-
user leaks more and more information of his dataset during
training, and gradually the Generator produces samples that
are more similar to the victim-user’s.

This idea is similar to the previous work on Model In-
version [126], since both of them aim to recover the training
data by extracting the characteristic information. However,
they are slightly different in the following two aspects. First,
Model Inversion is used to attack a centralized learning
model, while the Representative Sample Reconstruction is
used in collaborative learning [125], [127]. Second, Model
Inversion is based on the confidence of model, but actually,
some researches have found that the trained model still can
be fooled by randomly generating some strange sample. For
example, the trained model can recognize some Gaussian
noise as digital numbers, which leads to classification error,
i.e., recognizing a sample data which does not match with
the human-being’s perspective [128] [129]. So, Model Inver-
sion can obtain sensitive information, but also probably get
the meaningless information [125]. To avoid this problem,
Representative Sample Reconstruction attack improves it

with Generative Adversarial Networks(GAN) [130], which
not only ascertains the extraction of characteristic, but also
makes the information leaked by the generated data more
meaningful (i.e. the data cannot be distinguished from the
victim-user’s training set easily).

Based on the work proposed by Hitaj et al. [125], Wang
et al. further extended this type of attack which is called
mGAN-AI [127]. Based on the idea that all users train the
Discriminator, this GAN adds another procedure as follows.
The algorithm also catches the parameters updated by the
victim-user to update the Discriminator as in the previous
work. However, mGAN-AI also adds an additional step to
generate some sample data through parameters by using L-
BFGS algorithm [131], and then uses the data to train the
Discriminator again for a more accurate recognition model.
Finally, it interactively creates Generator with the help of the
Discriminator. Though some prior knowledge of user dataset
is needed in mGAN-AI, this attack is much more accurate
and accordingly the generated sample data is much more
similar to the victim-user’s original data.

6.4 Privacy-Preserving Frameworks

With the above possible privacy breaches, there is a con-
certed attempt to develop new privacy-preserving frame-
works in federated learning. Currently, the solutions are
mainly based on differential privacy [132] [133], secure mul-
tiparty computation [134] [135] [136], and homomorphic en-
cryption [137], [138]. In this subsection, we discuss these
frameworks in detail.

Informally, the goal of the differential privacy is to maxi-
mize the availability of data with limited sensitive informa-
tion leakage. In 2006, Netflix hosted a competition to im-
prove its algorithm for providing movie recommendations
to customers based on their past choices. To protect privacy,
they hid users’ id associated with the recommendations.
But by searching the keyword of each recommendation, it
was still easy to find the the corresponding user of each
comment. To solve this kind of problem, C. DWork et. al.
proposed a privacy preserving approach, called differential
privacy [132]. The main idea of this method is to add noise
into the information for privacy guarantee from a mathe-
matical perspective. This approach has been used in many
scenarios, and plays an important role in the privacy pre-
serving of federated learning. In 2015, Shorki and Shmatikov
proposed a privacy preservation framework in collaborative
learning [139]. Compared to the original federated learning,
in this framework each worker selects a part of parameters
and adds noise by differential privacy before uploading.
This gives a much more promising privacy guarantee for
selection upload with noise [119] [124]. However the latter
research also pointed out, the framework may lead to an ex-
tremely slow global convergence in a small scale federated
learning system [124]. Also it may not work well in avoiding
representative sample reconstruction attack [125].

As the later work pointed out, leakage of privacy still
exists even with Differential Privacy. Since the model itself
can represent the characteristics of the user, there is a pri-
vacy leakage when the model needs to be shared among
many workers during for federated learning. To avoid this
type of privacy leakage with good usage of all the workers’
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data, researchers proposed a combined way to integrate
Homomorphic Encryption and Secure Multi-Party Computation.
Homomorphic Encryption Algorithm encrypts gradient into a
cipher text, and this cipher text has an operator equivalent
to a certain operator of plain text. This enables computation
on cipher text with the same result as with the plain text.
For example, consider homomorphic encryption with the
property:

Enc(x1+x2) = Enc(x1) ◦ Enc(x2) (12)

where the function Enc(.) represents an encryption to trans-
late a plain text into a cipher text, x1 and x2 are two
variables, and ◦ represent a operator for cipher text. This
algorithm provides a framework of secure multi-party compu-
tation, enable workers have a stronger privacy guarantee.

In 2017, Phong et al. tried to apply homomorphic encryp-
tion algorithms to address privacy preservation in federated
learning [140]. In this work, all the workers apply homomor-
phic encryption and update the encrypted parameters to
the server. After combination in the server, they download
the encrypted parameters, and decrypt them to start a new
round of federated learning. This framework works well in
avoiding the attacks from curious-but-honest server (i.e. the
server will obey the federated learning protocol honestly,
but very curious about the data of the workers). However,
the framework still has some open problems. For example,
this framework can’t deal with the attack scenario where
the workers and server conspire. To address it, we need to
introduce a trusted third party [141], or improve the algo-
rithm with multi-key homomorphic encryption algorithm
proposed [142]. On the other hand, because the gradient
is not visible to the server, it is difficult to analyze the
appropriateness of each user’s parameter set. This would
allow a poisoning attack possibly leading to significant
impact on global accuracy [9].

Table 4 summarises the privacy attack technology and
privacy-preserving framework.It consists of representative
works for the three types of privacy attack, and possible
ways to protect privacy by considering a honest-but-curious
server and an active adversary respectively.

7 DISCUSSION AND CHALLENGING ISSUES

7.1 Collaborative Learning Schemes

Although many collaborative learning schemes have been
proposed for the full range of ML algorithms from un-
supervised learning to supervised learning, the relative
advantages of different types of submodel decomposition
and integration are still not investigated well. For example,
while clustering, linear model, and SVM all benefit from
Incremental Model Integration, they need to be further
investigated in federated learning. Also, the scalability of
distributed optimization methods in federated learning still
needs more studied. We find that most of collaborative
learning schemes follow passive and fixed participating
model, which means the root node mainly separates the
learning tasks and distributes them to other helpers. Active
and flexible participation schemes for collaborative learning
largely remain to be investigated. The new learning scheme
may bring new challenges with respect to model update

coordination, energy consumption, optimization, etc. For
example, active participation requires new coordination
mechanisms and their convergence analysis, which may be
quite challenging.

Meanwhile, for optimization issue in federated learning,
there still needs to investigate learning model in theo-
retically by jointly considering wireless channel, mobility
model of users etc., to expand federated learning in future
applications, such as training an autonomous driving model
by aggregating a lot of real drivers. Meanwhile, iteration
time slot and frequency should be joint optimized accord-
ingly for a mobile user scenario. Also considering mobile
user case, synchronization schemes shall further be investi-
gated to take care of data loss, synchronization error, com-
munication error, and other cases, by guaranteeing learning
model works well in such scenarios and can converge to a
accurate model. Finally, parameter compression also should
be further studied to be more efficient, and is also better to
be considered joint with privacy issue.

7.2 Robustness

The general models for distributed ML shown in Figs. 4
and 7 point to a large number of scenarios, many of which
can be very challenging to address. The most studied special
case so far is the federated learning where a common shared
model is trained by all WAs using private data and then
the model is run by RA. As discussed earlier, many attack
modes are possible in this case including data poisoning,
model poisoning, backdoor, evasion, sybil attacks, etc. Miti-
gation of many of these perturbations remains challenging,
in spite of several methods discussed in the literature. By
its very definition, a system is considered robust if it does
not fail easily (i.e., in response to small or isolated perturba-
tions). In ML, this amounts to ensuring that the model does
not provide an anomalous answer because of illicit training
on bad data with specific features. This can be addressed
by training the model to be resistant to imperfections in
the features, but this only provides a tradeoff between the
robustness and accuracy. In particular, a model trained on a
wide range of imperfections to make it robust is likely to be
less discriminative.

In the general case of overall model consisting of mul-
tiple submodels, each submodel needs to be made robust.
This would require, at a minimum, that the RA validate each
submodel separately before fusing their outputs. This would
still leave them exposed to the possibility of backdoors
or perturbation of aspects not specifically covered by the
validation tests. Covering such anomalies would require
some redundancy, which can be provided in multiple ways.
The simplest, but most costly, mechanism is to hand out
each submodel for training to multiple WAs, exactly as in
federated learning. For more sophisticated approaches, the
decomposition of the model into submodels needs to be
such that each feature is covered by multiple submodels.
This can be challenging since the submodel structure is
often decided by the most relevant training data that a party
possesses. Because of the complex relationship between the
inputs and output of a DNN, it becomes difficult to compare
submodel outputs to determine vulnerabilities.
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TABLE 4
A Summary of Privacy Attacks and Protection Frameworks

Types of the
Privacy Attack

Attack Methods Representative Works Several Possible Way to Protect

Membership
Inference

Given a trained
model and a data,
the attacker
wants to figure
out whether this
sample belongs
to the training set
or not.

Taking advantage of the model confidence to train a
classifier, and judge whether the target model has a
clear bias on that dimension in softmax layer [119] Honest-But-

Curious

Updating part of parameters with
noise to guarantee privacy [139]

Using Homomorphic Encryption to
build the Secure Multi-Party
Computation [140] [143]

Training Several Models with the same structure
and data extract from same distribution to build
CDF function [118]

Active
Adversary

Referring to the HTTPs
communication algorithm to make
the updated parameters invisible to
the third party, and add the special
noise to it [141]

Making a comprehensive analytic of the Model
Confidence and the Gradient [123]

Unintended
Feature
Inference

Given a
pre-trained
model, figure out
some features not
directly relevant
to the training

Training two kinds of model, one is trained with
the dataset having the feature the attacker wants
to infer, while the model’s dataset do not have
[124]

The Experiment shows that this attack is
restrained to many condition.

Representative
Sample
Reconstruction

Attack a certain
federated
learning worker
by extracting the
characteristics in
the training set,
and create a
sample that can
not distinguish
with the training
data

Model
Inversion

Using Heuristic Algorithm, iteratively
construct a sample that has the
minimize loss w.r.t the given pre-trained
model. [126]

Honest-But-
Curious

Using Homomorphic Encryption to
build the Secure Multi-Party
Computation [140] [143]

Representative
Sample
Reconstruction

The attack comes from a federated
worker. After generating the
representative sample with Generator,
attacker will give the synthetic sample a
wrong label, and put it into the training
set [125] Active

Adversary

Referring to the HTTPs
communication algorithm to make
the updated parameters invisible to
the third party, and add the special
noise to it, which is secretly created
by the workers, and can be offset
by other updated parameters. [141]

The attack is coming from the
aggregation server. Attacker use L-BFGS
algorithm to compute each user’s
identity sample, and then train the
Discriminator [127]

7.3 Privacy

We discussed the main privacy attacks including Mem-
bership Inference, Unintended Feature Inference and Rep-
resentative Sample Reconstruction, and the corresponding
privacy-preserving frameworks. The current representative
works on the latter are mainly based on secure multiparty
computation, which can provide a secure environment for
parameter aggregation. In such an environment, one user
cannot read the parameters of other users. However, if
there is a malicious user who intends to upload bad pa-
rameters to the root server, it is possible for him to avoid
the detection from other users, and this ultimately affects

the global model. The representative work is poisoning
attack as described in Section 5. For example, attackers can
generate representative samples by GAN and give them a
wrong label intentionally. Then the model can predict wrong
output with some specific features [100] [9]. The attack result
can be serious, e.g., the agent can treat a stop sign as a speed
limit sign to make a wrong decision in intelligent vehicles.

Malicious user/parameter detection becomes even more
important under privacy-preserving framework since the
parameters are non-transparent to other collaborative
nodes. Also, the computation and communication costs are
rather high in the current privacy-preserving frameworks,
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e.g., secure multiparty computation and homomorphic encryp-
tion algorithm. How to balance the training prediction and
privacy-preserving is still an open issue.

8 CONCLUSION

In this paper, we have performed a comprehensive survey
on collaborative learning, which is an important research
topic with numerous applications. The survey covers most
of the work that we are aware of in the corresponding
research fields. We focused especially on different learn-
ing schemes, robustness, and privacy issues. The learning
scheme is fundamental to collaborative learning and has
implications for many other aspects such as model update
coordination, optimization, robustness and privacy. We ex-
pect that in the future, more general learning schemes, such
as active or flexible participant schemes, may be investi-
gated, and will likely benefit many other application areas
of collaborative learning. Robustness and privacy issues also
need to be investigated much more deeply so that we can
find ways of making collaborative ML truly robust in critical
safety applications such as automated driving. As to the
privacy, the existing work shows that over-fitting affects
privacy-leakage differently for different types of attacks,
e.g., membership inference or attribute inference. More the-
oretical and experimental studies are required for different
types of privacy-leakage. Finally, a study of the computa-
tion and communication overhead of privacy preservation
schemes and techniques to make them more lightweight are
crucial for their widespread use.
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com/exdb/publis/pdf/lecun-89e. pdf.
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[49] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Fed-
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