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Abstract—Electronic communications play a key role in the
assessment of situation in the event of disasters and accordingly
dispatching of aid and rescue resources. These communications
are shifting more and more towards social media postings,
particularly using the twitter platform. Extracting intelligence
from the available data involves several challenges that we discuss
in this paper. This includes (a) filtering out irrelevant data, (b)
fusion of heterogeneous data generated by the social media and
other sources, and (c) working with partially geo-tagged social
media data in order to deduce the needs of the affected people.
Bigdata techniques are essential to accomplish this because of
large volume of data, much of which is not very relevant. Spatial
analytics of the data plays a key role in understanding the
situation but available only sparsely because many users do not
want to be tracked. We also discuss the role of edge computing
handling this analytics in a scalable manner.

Index Terms—Spatial Big Data Analytics; Crowd Big Data;
Disaster Management

I. Introduction

Situational awareness is crucial in a disaster scenario and
is often difficult to come by due to difficulty in obtaining the
necessary information in coherent manner and organizing it.
Part of the difficulty arises due to potential damage to and
overloading of communications networks, but to a large extent
it is not clear a priori what information is most relevant and
how it should be gathered. Since disasters evolve over hours
and days, tracking situational awareness becomes even more
challenging. Lately, social media has emerged as a primary
means for informing the ground realities and expressing the
needs by people caught in the disasters. Since much of the
social media access in disasters occurs from smartphones, it
is possible, in theory, to find the spatial location of the data
origin, but in reality location information is rather spotty due to
privacy concerns. Twitter has established itself as the disaster
communication vehicle of choice due to its modest networking
requirements, ease of use, and brevity. For example, after
2011 Japanese earthquake there were more than 5,500 tweets
per second after the disaster. Twitter has been used for a
wide variety of disaster scenarios, including the three major
Hurricanes in 2017, namely Harvey, Maria and Irma that
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affected Carribian and US East coast [1], 2019 Pan-European
Floods [2], and 2019 US midwestern floods [3].

Fig. 1(a)-(b) shows the distribution of earthquake related
tweets (with keywords ‘earthquake’, and ‘jishin’ which means
disaster in Japanese) in the Kumamoto Earthquake that struck
at Kumamoto City of Kumamoto Prefecture in Kyushu Re-
gion, Japan in 2016. The density of these keywords shows
close correlation with the shake map observed to the east
of Kumamoto City obtained by the Geospatial Information
Authority of Japan and National Disaster Institute for Earth
Science and Disaster Resilience [5]. Fig. 1(c) shows the power
outage related geo-tagged tweets from New York city during
the occurrence of Hurricane Sandy in 2012. The storm hit
New York city hard on Oct. 29th night, leaving hundreds of
thousands without power [6]. Fig. 1(d) shows the intensity map
of the affected areas in the Eastern USA, demonstrating that
New York and New Jersey areas were worst affected by the
storm. In fact the regions of Lower Manhattan from Madison
Square to the tip of the island was hit the hardest, with more
than 0.24 million people without power as of noon on Nov.
1st. The distribution of the such disaster related tweets was
well correlated with the actual areas of damage, which shows
the usefulness of the tweet analysis.

In addition, various network performance related data, such
as network usage, call drops, bandwidth utilization, signal
strength measurements etc. can also be obtained from the radio
access network (RAN), the core network (CN), and Internet
service providers (ISPs). A significant amount of such data
can be accumulated and used to gain valuable insights into
where and how the network repair or capacity addition should
be scheduled. In this paper our main objective is to explore
situational awareness in a disaster area through various types
of big data analysis.

The paper is organized as follows. Section II describes the
background of spatial big data analysis. Section V-A–IV sum-
marize the possibilities and challenges of big data analytics in
emergency management networks. We have demonstrated an
application of big data analysis in section VI through a case
study. The paper is concluded in section VII.

II. Spatial Big Data Analytics
Junbo: Spatial Prediction: (1) (2)
Spatial analytics is quite important in disaster scenarios,

by studying and discovering the relations between the data
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Fig. 1. Distribution of Kumamoto Earthquake (April-May, 2016). (a) Hotspot of Earthquake related Tweets after Kumamoto Earthquake and (b) its zoomed
in view. This high volume of tweets overlaps with the region of the epicenter as obtained the ground reality. (c) Tweets Distribution of Power Outage during
Hurricane Sandy 2012. (d) Illustration of the affected areas that were largely affected by Hurricane Sandy [4].
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Fig. 2. Four Major Types of Spatial Analytics.

and the location where the data is generated or is intended
for. Extracting interesting and useful patterns from the spatial
information of data is important and yet difficult due to the
complexity of spatial data types, spatial relations, and spatial
auto-correlations [7]. In this section we introduce four major
approaches in spatial analytics [8], namely spatial prediction,
spatial clustering, spatial outlier detection, and spatial co-
location pattern discovery.

A. Spatial prediction

Spatial prediction models can be used to support crime
analysis, network planning, and services after natural dis-
asters such as fires, floods, droughts, plant diseases, and
earthquakes. Consider, for example, n points with locations
denoted as s1, s2, ..., sn, and a set of explanatory features
X = [x(s1), x(s2), ..., x(si), ..., x(sn)]T at these locations. Let
Y = [y(s1), y(s2), ..., y(si), ..., y(sn)]T denote the ”situation” at
these points, which refers to the learned function Y = f (X)
representing a quantity of interest. The function f (X) is usually
known only in certain locations, and we are interested in
predicting it at others. This is illustrated in Fig. 2. Here,
we want to predict the situation at the location of the red
question mark based on the surrounding situations and the
spatial correlation among the data.

Spatial prediction models mainly can be divided into two
categories, i.e., spatial auto-correlation (dependency) and spa-
tial heterogeneity (non-dependency) models.

1) Spatial auto-correlation: Spatial auto-correlation fol-
lows the first law of geography, i.e., “everything is related
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to everything else, but near things are more related than
distant things”. For example, closer locations are likely will
the similar situations both in terms of the needs of the people
and conditions (e.g., wireless signal strength). Spatial auto-
correlation can be further divided into the approaches based
on spatial contextual information and the approaches based on
prediction models [9].

The first approach is achieved through augmenting input
data with additional spatial relation information [10], with ad-
ditional spatial context information from multi-source [11][12]
and so on. Once spatial contextual information is added,
traditional data prediction algorithm can be used (even not
special designed for spatial data). Instead of generating spatial
contextual information, the other approach directly incorporate
spatial dependency in the prediction model, and the main
strategies include Markov random filed based models [13] and
Kriging based models [14].

As an example, Kriging (Gaussian process regression) [14]
is a typical method for spatial prediction, which utilizes an
observed spatial relation to determine the range of auto-
correlation. In the kriging method, it is assumed that each point
i in a space is associated with a value zi. Let u denote a point
whose value, i.e., zu, is unknown. Then let V(u) = {1, . . . ,Nn}

be a set of u’ neighboring points, and zi represents the known
value in prior for each point i ∈ V(u). In ordinary kriging,
the unknown value zu at point u is estimated as a weighted
linear combination of the known values in V(n) as shown in
Eq. 1. To minimize the estimation error, kriging calculates a
set of optimal weights by using Eq. 2. In Eq. 2, hi, j represents
the distance between two points i and j, γ(hi, j) is a function
for the spatial correlation measure that represents the spatial
variance in the distance between all pairs of sampled locations
in space, and λ is the Lagrange multiplier to minimize the
kriging error. The ordinary kriging method assumes that the
mean is a constant for a neighborhood point, which can be
represented as the estimation error at an unknown point u is
zero, i.e., E((̂z)u − zu) = 0. The optimal weights in Eq. 2 are
found by minimizing the variance of the estimation error, i.e.,
Var(ẑu − zu).

ẑu =
∑

i∈V(u)

wizi, where
∑

i∈V(u)

wi = 1 (1)


w1
...
wNn

λ

 =


γ(h1,1) · · · γ(h1,Nn ) 1
...

. . .
... 1

γ(hNn,1) · · · γ(hhNn ,Nn
) 1

1 · · · 1 0


−1 

γ(h1,u)
...

γ(hNn,u)
1

 (2)

2) Spatial heterogeneity: In contrast, spatial heterogeneity
refers to the variation in the sample distribution across the
study area [15]. It assumes that spatial data samples often do
not follow an identical distribution in the entire big area, thus
the learning model from the entire area may indicate poor pre-
dictions for some specific areas. To solve the above problem,
the researchers investigate several kinds of solutions, including
integrating spatial coordinate features into data mining, multi-
task learning and so on. Multi-task learning is a common

machine learning solution for heterogeneous data, and can
group learning samples into several different learning tasks.
To solve spatial heterogeneity problem, multi-task learning can
be adopted by learning several local models based on specific
local data to enhance spatial prediction [9]. The heterogeneity
can also be described as spatial non-stationarity or spatial
anisotropy.

B. Spatial clustering

Spatial clustering groups similar objects based on various
measures such as distance, connectivity, or their relative
density in space. As a part in unsupervised learning in
machine learning and concept hierarchies, the cluster analysis
in statistics aims to find interesting structures or clusters
from data based on natural notions of similarities without
using much background knowledge. Spatial clustering can be
categorized as partitional clustering, density-based clustering,
and grid-based clustering. Partitional clustering separates the
whole data set into a set of disjoint clusters. For example,
the popular K-means methods partitions n data points into k
clusters where each data point belongs to the cluster with the
closest mean. Density-based clustering groups the points that
are closely packed together by neighborhood relationship, and
marks outliers that lie alone in low-density regions. The most
popular density-based clustering method is DBSCAN which
finds groups of points that satisfy the following condition:
given a radius (Eps) a cluster at least contains a minimum
number of objects (MinPts), and all the points are density-
reachable conditions. However, its computation complexity is
high because it processes each data point individually. Grid
based clustering differs from the above two in that it assigns
a value in each cell of the grid covering several data points.
Thus Grid-based clustering is generally quite efficient in big
data processing so long as the grid cell is not too small.

C. Spatial Outlier Detection

Spatial outlier detection [16] discovers the data which are
spatially distinct from their surrounding neighbors, such as
the red cross mark in Fig. 2. In many real applications using
geographic information, such as transportation, public, safety,
and location based services [17][18], spatial objects cannot be
simply abstracted as isolated points, because different proper-
ties, such as boundary, size, volume, and locations among the
spatial objects, lead to neighborhood effects.

Spatial outlier detection is designed to discover some un-
expected, interesting, and useful spatial patterns for further
analysis. Spatial objects can be seen as spatial points with
attributed values (non-spatial value such as temperature). The
spatial outliers can be formularized as follows.

Given a data mapping function ( f : X → R) from the
data set X = {x1, . . . , xn} to the real number set R, and
a neighbor evaluation function g, which is to evaluate the
neighbor information of each data xi ∈ X by averaging
NNk(xi) (the k nearest physical neighbors of xi), and further a
comparison function h, such as h = f −g or the ratio h = f /g.
For a set of data i = 1, 2, . . . , i, . . . , n, a data unit i is a spatial
outlier if hi is an extreme value of the set {h1, h2, . . . , hn}.
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Fig. 3. Spatial Outlier Detection based on a Variogram Cloud.

There are two main approches for spatial outlier detection.
One is graphic-based approach, such as variogram clouds in
[19][20] and pocket plots in [19] [21]), which visulize data
first and then find the corresponding spatial outliers. The other
is quantitative tests, such as scatterplots [22][23] and Moran
scatterplots [24]), which show the spatial association or non-
association of spatially close objects.

For example, Bipartite tests are typical multi-dimensional
spatial outlier detection methods, which use the spatial at-
tributes to characterize location, neighborhood, and distance.
Then it further find a spatially referenced object to its neigh-
bors based on non-spatial attributes such as temperature. A
Variogram Cloud can be used for spatial outlier detection [25]
as shown in Fig. 3. This plot shows two pairs are above the
main group of pairs are possible related to spatial outliers,
where x axles represents the spatial distance of pairs of points,
and y axles shows non-spatial features. Several other methods
used for spatial outlier detection[26] includes kNN, graph-
based method and so on. Also different statistic measures
were used for representing spatial distance, e.g., Z-Score,
Mahalanobis distance, LOF-based measure.

D. Spatial Co-location

Spatial co-location discovery [27] finds the subsets of
features that are frequently located together in the same
geographic area as shown in Fig. 2 (white and yellow circles).
Spatial co-location mining problem can be formalized as
follows [28]: Given a set F of K types of spatial features
F = { f1, f2, ..., fK}, and their instances I = {i1, i2, ..., iD}, where
D represent the amount of data. Each instance of data ii is
represented by a vector < id, ik, loci >, including its id, a type
of spatial feature ik and its location. Spatial co-location mining
is to efficiently find the colocated spatial features in the form
of features or rules.

Co-location pattern discovery can be mainly classified into
two categories: spatial statistics based and data mining based.
The spatial statistics based approaches use various measures
to characterize the relation between different types of spa-

tial events (or features), whereas data mining methods find
frequent and meaningful relations, positive associations, and
stochastic plus asymmetric patterns among sets of items in a
large transaction database and a spatial database. Measures of
spatial correlation[28] include cross-K function with Monte
Carlo simulation, mean nearest-neighbor distance and spatial
regression models.

Data mining approaches can be further divided into a
clustering-based map approach and association rule-based
approaches, or their integration [29]. Take the vertical-view
approach in [29] as an example to describe the process for
spatial co-location mining, it works as follows: 1) Map the
spatial data into K layers where K represents the types of the
feature; 2) Find spatial cluster for each layer of point data;
3) segment all the layers with a finit number of regular cells,
say M cells; 4) construct a M × K relational table with the
binary {0, 1}; 5) Apply association-rule mining to the table to
discover spatial co-location patterns.

III. Using SocialMedia for Emergency Situational
Awareness

Recent years have seen an increased interest by the research
community in using twitter data for situational awareness
in the emergency and disaster contexts. Event detection is
arguably the most active subtopic, where the objective is to
detect new events from a real-time twitter stream. A typical
approach for event detection is to define one or a few keywords
(e.g., earthquake) of interest and to track if there are temporal
bursts of the keywords’ use in the tweets [51]. Extensions of
this approach include general-purpose detection systems that
track a large number of keywords [52], phrases [53] or detect
emergence of clusters of similar tweets [54]. More recently,
researchers started paying more attention to the spatial aspect
of events [55]. For example, [56] considers burstiness of
term “earthquake” in both time and space to detect spatial
clusters of tweets that are candidates for an earthquake event.
The unsupervised approach for event detection can be further
enhanced by adding a classifier that is trained on previous
events to recognize which bursty clusters are events and which
are not [57].

Once an event has been detected, either by the aforemen-
tioned approaches, or by more traditional ways such as news
or emergency department announcements, another commonly
addressed research challenge is using twitter data to gain
situational awareness. Considering the state of the art in natural
language processing and data analytics, it is still not possible
to build a fully automated system that could provide actionable
knowledge to the responders. Instead, the emphasis has been
on summarizing and visualizing disaster-related tweets to help
human responders to quickly grasp the vast amounts of gener-
ated information. Representative systems are Senseplace2 [58],
a visual analytics system that allows an operator to enter a
query (in a form of a term or a hashtag), look at the map to
observe where is the keyword common, click on a specific
location, and view individual ranked tweets from the selected
location, and Twitinfo [59], a tool that allows an operator to
browse a large collection of tweets using a timeline-based
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TABLE I
Comparisons of Spatial DataMining Algorithms

Types of Spatial
Mining

Categories Models and Algo-
rithms

Details

Spatial Prediction

Spatial
Autocorrelation

Special Contextual
Information

Reference [10] Spatial relation information
Reference [11][12] Spatial contextual information from multi-source

Model-based Spatial
Prediction

Reference [13] Markov random field
Reference [14] Gaussian process (Kriging)

Spatial Heterogeneity Reference [30] Location-dependent learning
Reference [31] Multi-task learning

Spatial Clustering

Density-based Approaches
Reference [32] DBSCAN
Reference [33] Adaptive DBSCAN for massive data analysis
Reference [34] Enhanced DBSCAN with similarity measurement
Reference [35] Grid-based DBSCAN for fast processing

Hierarchical-based Approaches

Reference [36] Hierarchical clustering based on topology learning to
reduce the computation complexity

Reference [37] Time-hierarchical clustering
Reference [38] Hierarchical aggregation for distributed clustering
Reference [39] Parallel hierarchical clustering

Partition-based Approaches Reference [40] Partition-Density joint clustering
Reference [41] Adaptive partition for spatial analysis

Spatial Outlier
Detection

Graphic-based Approaches Reference [19][20] Variogram clouds based solutions
Reference [24] Scatter-plot based solution

Statistics-based Approaches Reference [42] Multi-attribute based solution
Reference [43][44] kNN-based solution

Spatial Co-location
Pattern Discovery

Data Mining

Visualization-based Reference [45] Visualization and then mining
Parallel-based Reference [46] Parallel solution on GPU
Dynamic Reference [47] To solve dynamic varying patterns

Spatial Statistics
Reference [48] Cross-K function
Reference [49] Cross nearest distance
Reference [50] Q-test

display, drill down to sub-events, and explore via geoloca-
tion, sentiment, and popular URLs. More advanced visual
analytics systems also include capability to cluster disaster-
related tweets [60]. There are also summarization systems that
have capability to classify tweets into some of the predefined
categories [61]. As a representative system of this type, in [62]
the authors categorize disaster-related tweets into one of a few
predefined categories (e.g., personal, informative, other) and
subtypes (e.g., caution, casualties) using a classifier which uses
text features such as unigrams or bigrams and which is trained
on a manually labeled data set of historical tweets. We should
also mention that there are systems that integrate data from
multiple sources, such as Ushahidi (www. ushahidi.com) [63],
a platform that leverages Web 2.0 technologies to integrate
data from phones, Web applications, email, and social media
sites to provide publicly available crisis maps.

Other than Twitter, other social media platforms such as
Facebook, Wikipedia, Flickr etc. are also used in different
disaster scenarios. After the Sichuan earthquake in 2008,
the use of Tianya (a popular online forum in China) is
studied as a forum for online discussions on earthquake-related
topics [64]. Reference [?], [65] have studied the peer-to-peer
communication from a variety of other platforms especially
Facebook after the Virginia Shooting in 2007, and southern
California wildfires in 2007 [66]. During the 2013 Colorado
Floods, different flood-related communications in Facebook
and Twitter are examined in [67], [68].

When processing and analyzing such social media data
for event detection and situational awareness, one should be
aware of a multitude of challenges. One issue lies in varying
credibility, reliability, and quality of twitter data. For example,

geotagging of tweets is nontrivial because of the uncertainties
in their location and timing [69]. For example, only a small
fraction of tweets typically has an accurate GPS-quality loca-
tion and there could be a significant and unknown lag between
an event occurrence and its mention. Another challenge is
that there are significant differences in the dynamics, spatio-
temporal extent, and impact of different disasters, coupled with
the ever changing use of social networks such as twitter. As
such, one should be cognizant of these issues when performing
titter data analysis and transferring knowledge from previous
disasters.

IV. Challenges in Integrating Big Data with Emergency
Network

We envision the network configuration to be dependent
on both automated data collection from the smart phones
via specially designed emergency apps and human directed
communication such as phone calls and social media. Ac-
knowledging that twitter has established itself as the premier
human communication mechanism during disasters and the
wealth of publicly accessible disaster-related twitter data, we
consider integration of the twitter-based information for the
purposes of situational awareness and network configuration.
While the objective of situational awareness is to inform a
wide range of emergency responders, here we specifically
focus on situational awareness that facilitates decisions about
network configuration. We define network disturbances as any
situation that negatively impacts ability of nodes to send and
receive data. For example, this might include situations when
the network demand exceeds capacity due to bursts of activity
when the bandwidth is compromised, or when the portions
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of the network are down or disconnected. Situational data
available from different sources (such as social media) can
be useful in detecting the disturbances, understanding their
severity and causes, and take adaptive actions to recover from
such network damages/failures. Below we list some of the
key challenges regarding deriving situational awareness from
disaster related data analysis.

A. Spatio-temporal Uncertainty in Available Data

One specific challenge in using the user data is their origi-
nation. Some mobile users may disable their location in their
devices, or the location information from the base-stations may
not be precise enough due to localization inaccuracies. Data
originated from different locations during a disaster may have
varying data quality, precision, and accuracy. For example, the
location of the tweets is important as the tweets originating
around the disaster area are more important and contain
first-hand information. However, the users may not wish to
share their location. The timing is important since we wish
to consider it in dynamic network reconfiguration decisions.
Unfortunately, tweets may refer to past events without precise
time information. Thus, the challenges are both in terms of
estimating location and time as accurately as possible, and
using the available information suitably.

B. Data Ambiguity and In-homogeneity

The data generated by various sources is often non-
homogeneous in nature, incomplete, or ambiguous. Data ob-
tained from various social media is also prone to inaccuracies
and inconsistencies. For example, the first hand twitter reports
originating from the affected area are likely to be most
useful in situation awareness and hence network configura-
tion; however, because of potential damages to the Internet
infrastructure in the affected area, such first hand tweets may
be quite sparse. On the other hand, due to the popularity of
twitter during disasters, much of the information generated by
human-to-human communication media (e.g., word or mouth,
landline phone, broadcast media such as radio or TV, etc.)
increasingly ends up on twitter from non-disaster areas. In
general, the origin of these tweets can be from anywhere;
however, the regions around the disaster area are likely to be
the most relevant. This brings in issues of bigdata since one
must sort through a huge number of tweets in order to find the
relevant ones. In fact, even in the general disaster area, most
tweets may not be relevant for disaster response or network
evolution and must be filtered out in real-time.

C. Multimodal data fusion

Yilang: Please expand this section...
Generally, information about the same situation can be

collected from different types of resources, e.g., texts and
images in Twitter and Instagram. For each kind of detector, it
is represented as a modality, and it is rare that a modality can
cover the complete information of the situation. Multimodal
data fusion is required to integrate the information into a
comprehensive view. Generally, there are two approaches for

multimodel data fusion: feature-level fusion and decision-level
fusion, also known as early fusion and late fusion. Fig. 4
illustrates these. Feature-level fusion merges features from
different types of data resources together before classification.
For example, in [70] a Topic Graph is proposed to integrate
features from different modalities together, which is con-
structed by nodes (i.e., features or words) and edges among the
nodes (i.e., correlation of features). For decision-level fusion,
generally a classification score is given to each modality and
the maximal one is treated as the final classification result. In
[71], both of these methods were evaluated with text, video
and audio contents, and the results from the both approaches
increase around 10% precision comparing with the result
with the single data resource. Most recently, deep learning is
adopted to achieve model-based fusion for multi-modal data
fusion. For example, strong modalilities can be automatically
selected to achieve high accuracy of situation detection in [72].

Multimodal	
Data	Fusion	

Classifier	

Image	Text 

Feature	 Feature	 ...... 

(a) Feature-level Fusion.

Classifier	1	

Multimodal	
Data	Fusion	

Classifier	2	

Image	Text 

...... 

Feature	 Feature	 ...... 

(b) Decision-level Fusion.

Fig. 4. Two Major Types of Multimodel Data Fusion

D. A Light Weight Architecture for Data Analysis

The emergency data is widely distributed on Internet – either
published on the Web or gathered from distributed devices.
Different from the enterprise-oriented solutions, such as AWS
managed services, here we illustrate a light-weight architecture
by using open source tools. This architecture is shown in
Figure 5 and can be deployed either in the cloud or on-
premises servers and local devices.

Since the volume of the emergency data is incremental, it
requires automatic data crawling, storage, and transformation
to standardize the data stream for a generalized data analysis.
The data transformation part generalizes the data a matrix,
for example, to take the imagery data pre-processing by
calibrating, cropping and resizing the raw images which were
generated from different devices, and to take the tabular data
pre-processing by queries (SQL/NoSQL) from database or
data frame filtering or combination. Since the data may contain
ambiguous description about emergency, it is necessary to
teach the machine the meaning of emergency in the big
data stream. Therefore, we could label part of the data by
categorizing or annotating them to be further used as training
data set.

By using the container technology, we could compile such
an architecture into a Docker/Kuberneties image, and deploy
it in multiple devices. To support the emergency response,
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Fig. 5. A Lightweight Architecture for the Offline and Online Data Analysis

an online algorithm can continuously recognize specific emer-
gency features from the images or text data that were received
or crawled by the host device. It can also track the spatial
distribution of the detected emergency through an incremental
spatial clustering[73]. The offline data processing formulates
specific AI models by learning from the training data. It runs in
lower priority on the devices which has satisfied computation
resources, and outputs the trained models to be deployed
on devices for online data processing. The output of online
processing outputs a JSON data which contains the spatial
distribution of recognized emergency features and the original
text or images. The output JSON could either be visualized
locally for decision makers, or to be sent to parent device.
The online data processing in the parent device could do the
recognition of other specific emergency features, and to be
fused with the previous results.

E. Spatial Analytics During Evolving Disasters

Even though spatial analytics have been studied for a long
time, there are still new challenges when considering social
big data generated in disaster scenarios. This is because in
an evolving disaster scenario, the usage pattern and user’s
behavior changes over time, sometimes rather rapidly. Also,
the incoming user data from the crowd is highly dynamic
and the observed situation is intermittent, which becomes
an obstacle when trying to achieve reliable data analysis to
support decision-making after a disaster occurs.

To address the evolving spatial analytics, the authors in [73]
have introduced an information decay based spatial clustering.
The intuition behind this information decay factor is that
in a disaster scenario the disruptions over a region cannot
be satisfied immediately, and thus the importance of such
information does not disappear instantly, and instead decays
gradually over time. Decay model has been investigated in the
spatial clustering for streaming data, i.e., evolving clustering.
As the data comes in a streaming way, small clusters are
first temporarily created to organize the received data in the
clustering process. However, the existing work only applies
decay model to the clusters, but not for each point data, which
will affect the accuracy of situation representation.

F. Utilizing Non Geo-Tagged Tweets

Another key challenge of using Twitter data is to scarcity
of the number of geo-located tweets, which typically varies
in between 0.42% to 3.17% [74]. Utilizing the non geo-
tagged tweets can also provide useful information if they can
be related approximately to their origin. Some works [74],
[75] have proposed to determine “local” words by exploiting
the geographical distribution of the words in tweets over a
region. Formally speaking, local words are the ones with high
local focus and fast dispersion, i.e. they are frequently used
at some central points and drop off in use rapidly as we
move away from the central points [75]. For example tube
is more frequently used in London than other places. By
exploiting such distribution around 50%–87% of the tweets
can be located within few tens of kilometers [74].

Geoparsing is another well-known technique for extracting
the locations (also known as toponyms) inside a text, which
can be exploited for deriving locations from non geo-tagged
tweets. Using natural language processing techniques, loca-
tions in the level of streets or buildings can be derived, that
can help identifying the origin of a particular situation. For
example, a new tweet like “Having a moderate earthquake
5.8 mag here in Raoul Island, New Zealand” – provides
sufficient location information to locate the origin of the
incident. Related literature on geoparsing can be broadly
divided into two categories [76], namely toponym recognition
and toponym resolution. Toponym recognition techniques [77]
extract single or consecutive words from texts and match them
to a comprehensive set of pre-existing set of toponyms. The
key limitation of these techniques is the ambiguity of the
toponyms, as many location names have multiple occurrences
worldwide. To overcome this limitation, toponym resolution
based approaches [78] use different spatial indicators such
as time zones, use location field, and other textual clues for
ensuring more reliable location estimates.

Even in cases where the geo-locations are not found, the
contents of the tweets can also provide important information
regarding the situation. Different natural language processing
techniques for keyword analysis to determine relevance, speci-
ficity (or fuzziness), and importance of the content can be
explored to determine the usefulness of such tweets, whereas
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the irrelevant ones can be filtered out. These substantially
filtered, prioritized set of tweets can then be provided to human
experts involved in situation monitoring, to determine how the
infrastructure damage/repairs, movement of people, and po-
tential communications needs are changing, and consequently
how the relief assets (including those that support emergency
communications network) should respond to them.

G. Big Data Analytics in a Fragile Communications Network

After collecting the raw data from various sources, big
data platforms (such as Hadoop) need to sort through a huge
amount of data in order to extract the most relevant ones. In
fact, even in the general disaster area, most social media data
may not be relevant for disaster response or network evolution
and must be filtered out in real-time.

In the aftermath of a disaster, the communication systems
can be wiped out which makes distributed processing chal-
lenging. A fragile and disruptive emergency communication
network brings new challenges for spatial big data analytics
since big data is often analyzed in a cloud center to re-
duce processing time, and the transmission delay from user’s
devices to the cloud could become dominant. This requires
tradeoffs between local processing at the devices, intermediate
processing at some edge computing nodes, and final processing
in the cloud. However, distributing processing among these
heterogeneous levels with varying storage, processing, and
communications capabilities becomes quite challenging.

V. Situation Awareness in Different Disaster Applications

In the following, we study the literature available on situa-
tional awareness a wide range of disaster applications.

A. Situational awareness in communications networks

We define network disturbances as any situation that neg-
atively impacts ability of nodes to send and receive data.
For example, this might include situations when the network
demand exceeds capacity due to bursts of activity due to
inadequate bandwidth, or when portions of the network are
down or disconnected. Network performance related data can
be useful in detecting the disturbances, understanding their
severity and causes, and take adaptive actions to recover
from such network damages/failures. Given the high degree
of robustness and redundancy of the public communications
networks, large scale network failures are very rare, as evi-
denced by Kumamoto earthquake and hurricane Sandy events
discussed in this paper. Also, if a large network outage does
occur, it would decimate the social media traffic in the affected
area; therefore, we do not focus on such events in this paper.

1) Detection of network disturbances: Detection of network
disturbance can be performed by analyzing the spatial scan
statistics [79] and its many extensions [80], [81], [82] to detect
spatial, temporal, or spatial-temporal areas where the user’s
activity is different from the norm. Network abnormality or
anomalies in a cellular network can be identified by examining
the call records of the users in a region, their locations, mobil-
ity patterns etc. Similar anomalies can also be identified from

the user’s tweets that originate from the region of interest and
their spatio-temporal behaviors. Spatial outlier based scanning
can be applied in this context for spatio-temporal anomaly
detection.

Spatial scan based algorithms have been traditionally used
for disease mapping where the objective is to find regions
containing significantly increased incidence of disease symp-
toms, but has since found many other applications as well.
The spatial scan algorithms scan the spatial-temporal region
of interest to find the most significant subregion and report its
statistical significance. A notable application of scan statistics
in the domain of social networks is analysis of spatial dis-
tribution of 803 flickr tags in the Bay Area [83] in order to
distinguishing between place and event related tags. The key
challenge for analyzing such scan statistics is computational
because there is potentially a huge number of terms that
could be tracked, which may require distributed processing
across multiple clusters. For social media generated data,
another challenge is to account for geolocation and temporal
uncertainty in such data, and at the same time account for the
expected mobility of the mobile users.

(a) (b)

Fig. 6. Adaptation of the routes after sniffing potential congestion between
Tokyo and Sapporo. (a) Route-1 is the direct route from Tokyo–Sapporo,
whereas (b) Route-2 goes through Kyoto.

2) Congestion and traffic control: Big data analytics can
be beneficial for traffic monitoring in both wireless and wired
networks. Such analytics can be used to identify congestion in
the communications infrastructure immediately before, during
and after the disaster. Often the communications network
experiences congestion when the event is imminent and during
the event period. The reason for congestion could include both
damage to and high demand for computing and communica-
tions. It is important to understand and manage such conges-
tion while also backing up the state of potentially affected
computing infrastructures to remote locations. Congestion
remains crucial after the onset of the event related disruption.
Social media data such as user tweets can also address the
issue of characterizing failures in the network [84] – i.e.,
user complaints about the network functionality or slowness.
Examples of such tweets are as follows [85]: “I cannot get
through to Miyagi...I’m worried.”, or “I’m in Shibuya now. I
cannot get through.” etc. Spatial clustering based schemes can
be used to identify those regions where such complaints are
significantly higher than in other regions.

In the context of wired networks the authors, in [86] have
used the data plane programmability of the Openflow switches
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to adopt more flexible network control. For example in Fig. 6
the costs of the routes are increased based on the tweets com-
plaining about the network issues. The Openflow controller
can switch the routes whenever it sniffs a link congestion. In
Fig. 6 the route-1 in between Tokyo and Sapporo is switched
to route-2 after the controller sniffs a potential congestion on
route-1. The Openflow switches can also be reprogrammed
for content based bandwidth control. For example, in case of
potential network congestion, packets related to SMS, email
or voice communication can be given higher priority than the
video based communications.

3) Finding network isolations and resource allocation:
Another application of situational awareness is to identify
isolated regions that are functional but disjointed from the
remaining network. In a cellular network, tracking the call
records and the usage densities are good indicators of finding
the network availability. Spatial outlier detection based tech-
niques are very useful in such contexts, where the objective is
to find the regions from where the usage is significantly lower
as compared to the surrounding regions. However, this is a
very challenging problem because of the need to analyze the
available data over a large region encompassing the isolated
area. Notice that such isolations can also happen due to other
reasons, such as drainage of the smartphone batteries due
to lack of power and mobility or evacuation of the users
from a certain area. Careful analysis of the call density along
with other useful information from multiple sources (such as
evacuation notice) can be utilized for finding such network
isolations.

Upon finding the isolated, disconnected regions, a variety
of emergency equipment such as WiFi access points, satellite
gateways, replacement cellular base stations, etc. mounted
in fixed places or on Emergency Communication Vehicles
(ECVs) can be deployed to bring the connection back. Mov-
able base-stations or access points mounted on drones and
balloons can also be deployed for meeting the communication
gaps [87]. As the resource requirements in a disaster scenario
change over time, spatial prediction of the user density and
usage patterns are needed before such deployment operations
to avoid further disruption and performance fluctuations.

B. Big Data Analysis for Power Outage Detection

Real time situational awareness for detecting power outages
from social media data has received interest in recent years.
Reference [88] have used key words searching to collect
power outage-related tweets. They have developed a modified
approach of Kleinberg’s burst detection algorithm to promptly
detect the power outages from the tweets. In [89] the au-
thors have proposed a supervised Latent Dirichlet Allocation
(sLDA) to detect power outages. To overcome the limitations
of 140 character limit of the tweets, the authors have used a
supervised topic modeling with text-rich heterogeneous infor-
mation network. In [90] the authors have studied the reported
cases of power outage related tweets during Hurricane Sandy.
They have also proposed a k-means clustering scheme for the
efficient allocation of power resources based on the available
tweets. In [91] the authors have analyzed the brightness change

in the satellite data along with the density of power outage
related for identifying the severely impacted areas. The study
have shown that Twitter data fused with satellite imagery can
identify power outage information at a street-level resolution.
In [92] the authors have used the key textual descriptions
of power outages to filter the relevant Tweets, and built a
predictive model that identifies those Tweets referring to real
power outages. The procedure has been field tested on the
users in real industrial settings; the results show that more than
93% of all the power outages detected by the scheme actually
referred to the real outages. In [93] the authors have separated
the tweets into power outage, communication outage and
both power-communication outage related events by analyzing
popular words, length of words, hashtags and sentiments that
are associated with these tweets. The study has claimed that
using simple classifiers like such as boosting and support
vector machine can successfully classy the outage related
tweets from the unrelated ones with close to 100% accuracy.
The study has also claimed that by employing transfer learning
models such as Bidirectional Encoder Representations from
Transformers (BERT), different categories of outage-related
tweets can be classified with an accuracy close to 90% in less
than seconds of training and testing time.

C. Big Data Analysis for Event Detection during Natural
Disasters

Social media data for situational awareness in crisis scenario
are discussed in [105], [106], [107]. In [94] the authors
have analyzed tweets regarding resource needs and resource
availability for the efficient management of post-disaster oper-
ations, using supervised classification and unsupervised pattern
matching and information retrieval approaches. The authors
have conducted experimental study on tweets posted during the
Nepal earthquake in April 2015 and the earthquake in Italy in
August 2016. The study shows that classification approaches
perform better if good quality training data are available
from prior events, whereas in the absence of such training
data, unsupervised retrieval methods outperform supervised
classification approaches. In [95] the authors have proposed
a Deep Neural Network (DNN) to identify informative tweets
and classify them into topical classes. They have also proposed
an online stochastic gradient descent based algorithm to train
the DNNs in an online fashion during disaster situations.
Reference [96] has provided a comparison between matching-
based [108], [109] and learning-based [110], [95] approaches
for effectively identifying relevant messages from matching
keywords and hashtags in social media data. Learning-based
approaches typically build a model from a set of labeled
tweets, whereas matching-based approaches search the tweets
having relevant keywords and hashtags. In [97] the authors
have proposed an Integer Linear Programming (ILP) technique
that generates summaries of big volume of twitter messages
around some identified sub-events, that helps crisis respon-
ders to fulfill their information needs. Reference [111] has
generated verified summaries from the information posted
on Twitter during disasters. Enhancing real-time situational
awareness through filtering and summarization of social media
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TABLE II
Representative Studies of Big Data Analysis for Emergency Event Detection

Types Key points Representative
Works

Details

Situational awareness
in comm. networks

Spatial scan related analysis for finding
the network disturbances, congestion and
network isolation

Reference [84], [85] Characterizing network failures from user complaints
about network functionality or slowness

Reference [86] Used data plane programmability of the Openflow
switches to adopt flexible network control

Reference [87] Studied the optimal delay in a fog/edge-computing
platform constructed by vehicle-based movable &
deployable ICT resource units

Power outage
detection

Situational awareness for detecting power
outages from social media data using
keyword searching

Reference [88] Developed a modified approach of Kleinberg’s burst
detection algorithm to promptly detect the power
outages from the tweets

Reference [89] Developed a supervised Latent Dirichlet Allocation
to detect power outages

Reference [90] Proposed a k-means clustering scheme for the ef-
ficient allocation of power resources based on the
available tweets

Reference [91] Shown that Twitter data fused with satellite imagery
can identify power outage information at a street-
level resolution

Reference [92] Developed a predictive model for identifying Tweets
referring to real power outages

Reference [93] Separated the tweets into power outage, communica-
tion outage and both power-communication outage
related events

Event detection
during natural disasters

Analysis of tweets regarding resource
needs, availability; filtering,
summarization and classification of
informative tweets from others

Reference [94] Analyzed tweets regarding resource needs and re-
source availability

Reference [95] Developed a DNN to identify and classify informa-
tive tweets into topical classes

Reference [96] Compared matching-based and learning-based ap-
proaches for effectively identifying relevant mes-
sages from matching keywords and hashtags in social
media data

Reference [97] Proposed an ILP to generate summaries of twitter
messages

Reference [98] Enhanced real-time situational awareness through
filtering and summarization of social media data

Reference [99] Developed a probabilistic spatio-temporal model to
find the center of the target event

Data analysis
during Covid pandemic

Analysis of Covid related tweets regarding
public awareness,sentiment analysis, and
classification of informative tweets from
others

Reference [100] Identified Covid related hashtags, along with the
linguistic analysis of the tweets in different hashtag
groups

Reference [101] Characterized public awareness regarding Covid by
analyzing tweets in the affected countries

Reference [102] Implemented a neural network for sentiment analysis
using multilingual sentence embeddings

Reference [103] Discussed the diffusion of Covid related information
with a massive data analysis on Twitter

Reference [104] Proposed a multi-view clustering for analyzing
tweets using clustering hashtags

data is reported in [98]. The authors have reported the study
of twitter data during 2012 Sandy Hurricane from New York,
Philadelphia, Boston, and Washington DC. In [99] the authors
have devised a classifier of tweets based on some keywords,
their numbers, contexts etc, and developed a probabilistic
spatio-temporal model that can find the center of the target
event location. The authors have implemented this approach
as an earthquake reporting system in Japan; the study has
shown that it can promptly detect 93% of earthquakes of
Japan Meteorological Agency (JMA) seismic intensity scale
3 or more.

D. Big Data Analysis Related to Covid-19

Recently COVID-19 (also known as the novel coronavirus)
has emerged as a world-wide pandemic that has affected

several millions of people in the last few months [112]. The
continuing evolution of COVID-19 in the USA had placed
substantial stress on the resources necessary to deal with
it. This includes hospital-beds, doctors, nurses, paramedics,
personal protection equipment (PPE), ventilators, ambulances,
police, test kits, testing supplies, common medications cur-
rently being prescribed, etc. In [100] the authors have identi-
fied Covid related hashtags, and have grouped them into six
categories (namely general Covid, quarantine, panic buying,
school closures, lockdowns, and frustration & hope. They have
also presented a linguistic analysis of the tweets in different
hashtag groups and have observed that words such as family,
life, health and death are common across hashtag groups.
In [101] the authors have characterized public awareness
regarding Covid by analyzing tweets in the most affected
countries. Specifically, the authors have examined the (a)
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(a) (b)

(c) (d)

Fig. 7. Spatial densities of Covid-19 related tweets from months (a) January to (d) April, 2020.

temporal evolution of Covid related trends, (b) the volume of
tweets and recurring trends in these tweets, and (c) the user
sentiments towards preventive measures. In [102] the authors
have implemented a neural network for sentiment analysis us-
ing multilingual sentence embeddings; they have observed that
in almost all countries the lock-down announcements correlate
with a deterioration of mood, which recovers within a short
time span. The authors in [103] have addressed the diffusion
of Covid related information with a massive data analysis on
Twitter, Instagram, YouTube, Reddit and Gab. The have also
fit information spreading with epidemic models characterizing
the basic reproduction numbers for each platform. The authors
in [104] have analyzed Covid related tweets using clustering
hashtags, and have proposed a multi-view clustering technique
which incorporates multiple different data types that can be
used to describe how users interact with hashtags. A review of
available methodologies for developing data-driven strategies
to combat the Covid pandemic is discussed in [113], along
with their difficulties and challenges. Representative studies
on big data analysis on social media data for emergency event
detection is summarized in Table II.

VI. Temporal Evolution of Spatial Features
It’s been observed repeatedly that much of the data has a

popularity pattern: Very hot when the data is generated, and

then the popularity wanes. The data may become hot again.
This trend is true for the social media data as well. In this
context, we define the “information energy” of a tweet as the
intensity of the tweet that is the highest power when a tweet
originates, and then gradually fades over time. Information en-
ergy for a specific location can be accumulated with the other
messages (or tweets) describing the same situation. Assume
that the information energy for a point object p in spatial big
crowd data at time instance tc is denoted as Eε(p, tc). Also
assume that the temporal decay of the information energy
(TDIE) for each spatial data follows an exponential decay.
That is,

Eε(p, tc) = Eε(p, tp) · η−λ·(tc−tp) (3)

where tp denotes the time stamp when spatial data/object p
appears, and η is the base of the exponential decay.

To find the spatial hotspots during an evolving disaster,
we choose a density measure based on Kulldorff’s spatial
scan statistic [114], which is commonly used in finding the
significant spatial clusters in case of an emerging outbreaks.
With this the incremental spatial clustering in evolving disaster
(or outbreak) scenario has two main functions, the spatial
data aggregation (SDA) and spatial data clustering (SDC).
The SDA handles decay and reinforcement of the information
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Fig. 8. Position of Hot-spot (ηλ = 2) for Helix Movement Data Set.
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Fig. 9. Edge Computing for Spatial Clustering.

weight over regions. The SDC tracks the boundary and move-
ment of the dense regions of the targeted evolving disasters.

We demonstrate such temporal and spatial evolution of
tweets that are related to Covid-19 pandemic during that has
affected millions of people around the world till date [112].
Fig. 7 shows the spatio-temporal evolution of tweets during
the January-April 2020 timeline. From this figure we can
observe that the temporal density variation of the tweets
across different sub-continents have grown over time starting
from January, which clearly matches its temporal spread. For
example, during the February timeline, the spatial density
of USA, East Asia and European countries were more as
compared to Indian sub-continent, however, the cases in India

started growing in March-April period. The tweet densities in
Australian continent is quiet sparse which also matches with
the small number of cases in that regions.

However, we noticed that the number of Covid related
tweets with geo-tags are extremely sparse (Please give the
statistics), thus, we could not conduct any spatial aggregation
and clustering analysis in daily or weekly basis. We therefore
simulate the incremental spatial clustering using a synthetic
database obtained from [115]. The database is composed of
several datasets that model the temporal evolution of the
information contents in a two dimensional space. The datasets
were generated by Gaussian distributions whose mean and/or
variance change over time. We use the “3C2D2400Spiral”
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Fig. 10. Clustering Results of centralized and distributed spatial clustering schemes.

dataset, which presents a helix alike movement of 3 clusters.
These three clusters could be considered as three groups of
population with dynamic ratios of the situation ε over the
time series. We visually illustrate the effect of our incremental
clustering on the helix movement dataset using Fig. 8 to
illustrate the position, movement and coverage of the hot-
spots when ηλ = 2. From this figure we can observe that the
movement of the hotspot is rather continuous, which is because
of the use of TDIE concept. This continuous movement
basically replicates the evolving nature of the disaster.

A. Role of Distributed Spatial Clustering

Offloading tasks from the cloud to the local computing
resources can reduce transmission delay and cost. We demon-
strate this by studying the effect of distributed spatial cluster-
ing scheme [116] on the Twitter data obtained during the Japan
earthquake in 2016. Fig. 9 and Fig. 10 show some evaluation
results from our recent studies in [116]. The evaluation was
performed by simulating 18 processing nodes (defined as Edge
nodes) deployed over Japan to process the Twitter dataset
generated when Kumamoto-city suffered the earthquake in
2016. We have collected a total of 37 million tweets during
and after the earthquake, among them 38466 tweets (around
0.1%) were geo-located. From these tweets we have extracted
the ones containing terms of ’earthquake’ both in English and
Japanese language.

The edge nodes are placed in a tree-like architecture rooted
at Node-0, as shown in Fig. 9(a). We divide the entire segment
of the map into several sub-regions of rectangular grids. Each
edge node processes the tweets of certain sub-regions; the leaf
nodes cover the smallest sub-regions, whereas the root node
covers the largest. For example in Fig. 9(a), Node-0 covers
the rectangular region ranging from bottom–left coordinate
[30,129] to top-right coordinate [46, 146]), and its children
Node-1 and Node-2 cover sub-regions [30,129],[46,137] and
[30,137],[46,146] respectively, and so on.

The maximum number of tweets were originated from
the Kumamoto region, which is situated in the southeast of

Japan. To make a detailed observation in this region, we
deployed more edge nodes in the Kumamoto region, which
is shown in top-left corner of Fig. 9(a). Node 3’ is a cloned
instance of Node 3, with different region of coverage; ranging
from bottom-left coordinate [30,129] to top-right coordinate
[36,137]. The entire Kumamoto region is sub-divided into
50×40 grids, having a total of 6428 tweets. We also observe
that some tweets were originated from outside the land (in
ocean, maybe on-board ships); we thus consider them as noise.

The distributed spatial clustering scheme consists of three
modules: (a) a clustering module at each edge node based on
the local tweets, (b) a data aggregation module to integrate the
tweets obtained from the child nodes, and (c) an control mod-
ule to coordinate the two functions. The overall architecture
for the distributed analysis is shown in Fig. 9(b). Fig. 10(a)-
(b) show the comparison of the centralized clustering scheme
with the distributed clustering scheme, where the clustering is
performed at each edge node, and then aggregated by its par-
ent. From this figure we can observe that the distributed spatial
clustering outcomes are pretty similar to that of the centralized
counterpart. In Fig. 10 the hotspots are the clustered regions
where the spatial density of the earthquake related tweets are
higher than that of outside (measured from the Kulldorff’s
spatial scan statistics [117]).

VII. Conclusions
During disasters, the data relevant for situational assessment

is generated from many different sources including social
media use by the affected people (usually Twitter), direct
communications with other, possibly unaffected users who
put the information on the social media, and observations by
the deployed monitoring infrastructure, etc. Different types of
disaster related data may come from various sources: such
as from the user’s end, from the social medias or from the
network operators. The data collected from these sources
contains a lot of irrelevant or weakly relevant information,
and it becomes necessary to use big data techniques to extract
intelligence from them. Spatial information and context is
crucial for this, and the paper focuses on several opportunities
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and challenges of spatial big-data analytics with partial spatial
information to extract situational awareness of the disaster.
We hope this article will spur further research and results in
solutions to many of these issues.
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