
FussyCache: A Caching Mechanism for Emerging Storage
Hierarchies1

Abstract
With the emerging high speed storage devices, it is no longer
desirable to adopt a DRAM caching scheme that carefully
discriminate what should be brought into the cache and what
should be accessed directly from the device as needed. In
this paper we propose such a mechanism and show that
FussyCache for Intel Optane based storage can reduce the
average latency by almost 20% compared to the native
caching mechanism such as plain LRU.

Index Terms—Storage Hierarchy, Caching, Non-volatile
memory (NVM), 3D-Xpoint, Intel Optane

I. Introduction

The emerging nonvolatile memory and storage technologies
are beginning to fill the huge gap that traditionally existed
between the magnetic disk drive based storage and DRAM
based memory. It is now possible to have the storage
hierarchies where at least some of the adjacent layers may
differ only by an order of magnitude in speed. In such
cases, a traditional caching mechanism that blindly caches
everything from the lower level is not desirable. Furthermore,
at the highest level of the storage hierarchy, the overhead
of managing the DRAM cache could be comparable to the
read/write latency of the storage device. Thus, it may be
beneficial to only cache frequently requested data while
serving other requests from the next lower level directly. At
the same time, the complexity of the caching mechanism
needs to be commensurate with the impact of management
overhead. In this paper we propose such a mechanism called
“FussyCache” that is “fussy” about deciding what to cache.
The mechanism is also self-regulating in that it tracks its own
performance and switches over to the native mechanism if it
is doing worse and switches back when appropriate. Using
the available storage system traces, we show that FussyCache
for Intel Optane based storage can reduce the average latency
by almost 20% compared to the native caching mechanism
such as plain LRU.

The recently released Intel Optane, and particularly the 2nd
generation Optane to be released in early 2020, has a latency
of only 10-20us [1], which is becoming close to memory
latency ([2]). It is also worth noting that a 4KB data transfer
size is rather small, and applications often use larger transfer
granularity. The gap narrows further with larger transfer sizes
since all storage technologies suffer a significant initial access
latency. For example, the current Samsung Evo Plus SSD
can achieve read rate of 3 GB/sec and the 2nd generation
Optane should also achieve similar rates. Thus the actual

time required to read a 4KB block is only about 1.3us; the
rest being overhead. Thus large transfers from SSDs and
Optanes may reduce the gap between memory and storage
latency to only a few X.

With very fast storage, the overhead of caching mecha-
nisms in terms of both computation and memory reads/writes
becomes significant. For example, a mechanism that requires
maintaining substantial amount of information about the
access patterns to enable intelligent prefetching or retention
could become unattractive unless the additional overhead can
be more than compensated by the improvement in the hit rate.
Consequently, we will largely use the popular LRU (least-
recently used) caching mechanism [3] as a baseline because
of its simplicity and effectiveness in practice. However, we
will also evaluate some variants of LRU as well, as discussed
below; however, it is important to note that sophisticated,
high-overhead caching mechanisms, are less likely to be
useful as the storage latency goes down.

The outline of the rest of the paper is as follows. Section II
discusses the related work. Section III discusses the method-
ology and implementation of FussyCache. Section IV then
discusses the experimental evaluation. Finally, section VI
concludes the paper.

II. Related Work

Caching is an extremely rich area with numerous algo-
rithms; the most popular ones being LRU and its variants
such as LFU, ARC (Adaptive Replacement Cache) ([4]),
ACME ([5]), and Sequential Adaptive Replacement Cache
(SARC) [6]. Other related algorithms include Adaptive
Multistream Prefetching (AMP) [7], Domino [8], Sampled
Temporal Memory Streaming (STMS) [9], Tombolo [10],
etc.

Majority of research related to caching has focused on
attaining higher cache hit rates by making intelligent deci-
sions corresponding to potential cache candidates. However,
for the given storage hierarchy, it could make more sense
to do away with the aforementioned mechanisms with a
cache that does not prefetch and is not populated whenever
a block of data is requested for. This is because serving
random accesses from the next layer of storage maybe a more
suitable approach due to its low access latency compared
to previous traditional storage systems. Only "popular" data
can reside in the cache (which is the fastest storage layer) as
requests for this data is not considered to be random. None
of the previous work has dealt with the issue of caching
from very fast devices and this paper addresses that.

1

III. Implementation Methodology
A. FussyCache Overview

Our approach consists of splitting the usual memory cache
into 2 caches - a data cache (DC) and a dynamic metadata
cache (DMC). Both caches are block caches i.e. data is
assumed to be accessed in the LBA level, although we
will treat LBAs more like chunks. The major difference
between DC and DMC is that the latter does not store
data corresponding to the block addresses. The DC houses
only the identified popular data while the DMC stores the
frequency corresponding to recently accessed blocks. The
DMC also monitors the blocks that have turned popular
i.e. blocks whose frequency has crossed a certain threshold
value. Newly popular blocks are inserted into the DC along
with the data, whereas the blocks evicted from the DC are
inserted into the DMC (without the data, and the data is
discarded).

DMC also keeps a check on whether the DC’s hit rate is
decreasing and if so it switches the DC to a traditional native
cache, which implements a LRU or other simple mechanism.
This is to enforce the “do-no-harm” idea. There are certain
scenarios, as discussed later, where the shuffling of the items
between the DMC and DC is not useful and thus ends
up hurting the performance. In such cases, the mechanism
automatically reverts to the native scheme. However, the
DMC does continue to run in the background so as to
detect whether the original mechanism can be brought to
the forefront again. The targets of incoming requests are
first checked if they have been marked as popular or not. If
they are, their data is cached in the DC. In both cases, the
metadata is entered into DMC (for new requests) or updated.

The mechanism currently treats both reads and writes
identically i.e. it does not distinguish between read popular
data and write popular data. This is reasonable when the read
and write latencies do not differ much; however, for storage
devices with substantial difference in read and write speeds,
it would be useful to weight the reads and writes differently.
For example, the current high end SSDs and Optane drives do
not show much difference in their read/write latencies. The
phase change memory (PCM) based devices, when available,
are expected to have significant differences in read and write
speed because of the basic nature of the operations (write
performed by melting of material and its cooling, whereas
read is simply a check on the conductivity properties).

B. FussyCache Parameters

Our algorithm has the following internal parameters:

• freqThreshold: This parameter determines whether a
certain block is popular or not. Once a certain block
has been accessed more than freqThreshold number of
times, it is declared to be popular. If aggressive caching

is desired, then this parameter is set to a low value such
as 3 or 4.

• accessThreshold: This parameter is used for two func-
tionalities - hit-rate derivative calculation and population
of the DC. The former deals with detecting whether
a traditional mechanism is desired over the current
mechanism for the given workload while the latter is
applicable to when the DMC performs a check on all
its contents in order to identify new candidates for DC.
Every time the number of processed requests crosses

• accessThreshold, the two mentioned events are trig-
gered.

• dmcsize: This determines the size of the DMC. It is
calculated during the warmup phase.

• hrCount: hrCount is used to determine the number
of consecutive times the DMC allows the hitrate to
deteriorate. Beyond which it reverts to a traditional
LRU cache. It doubles every time a switch is made
between the caches. Our implementation starts off with
a value of 5 i.e. it checks every accessThreshold number
of requests whether the hit-rate has deteriorated for 5
consecutive times before it can make the first switch.

• sleepTimer: This parameter decides how long the DMC
thread sleeps and is dependant on the accessThreshold
parameter.

C. Dynamic Metadata Cache

The contents of the Dynamic Metadata Cache (DMC)
are characterized by block numbers and their frequency
value (defining the number of times each of these blocks
have been accessed). No data corresponding to the blocks
are part of the DMC. However, data corresponding to the
requests directed at the DMC, are fetched from the next
layer of storage while in the meantime, its presence in the
DMC is checked. If it is already present, the frequency of
the corresponding block is incremented, else the block is
inserted into the cache along with a frequency of 1 as this
is the first time it has been accessed in the given recent
past. In short, the DMC consists of unpopular blocks that
have been accessed recently. The frequency of these recently
accessed blocks are observed so as to see if any of them
turn popular. Old, least accessed blocks in the DMC make
way for newly accessed blocks.

While serving requests, the DMC performs two other
operations for every accessThreshold number of accesses:

• Identification: The DMC checks the frequency of every
block present in it and if any of them crosses the
freqThreshold then that block’s data is fetched from
the storage and inserted into the DC.

• Cache Change: The DMC also keeps a check on the
hit-rate of the DC. It checks if the hit-rate at the current
check is smaller than the one during the previous check.
If this check is satisfied for hrCount number of times,

2

Algorithm 1 DYNAMIC METADATA CACHE
1: hitrate ← 0
2: hrMeasure ← 0
3: DC.accesses ← 0
4: LRU ← f alse
5: while true do
6: sleep (sleepTimer)
7: if accesses < accessThreshold then
8: if LRU then
9: for i ← 1 to DMC.count do

10: if DMC.nodes[i].frequency>freqThreshold
then

11: popularBlocks ← popularBlocks+1
12: end if
13: end for
14: if popularBlocks>DMC.count / 2 then
15: hrCount ← hrCount ∗2
16: hitrate ← 0
17: hrMeasure ← 0
18: DC.accesses ← 0
19: LRU ← f alse
20: end if
21: if hrMeasure==hrCount then
22: hrCount ← hrCount ∗2
23: hitrate ← 0
24: hrMeasure ← 0
25: DC.accesses ← 0
26: LRU ← f alse
27: end if
28: else
29: for i ← 1 to DMC.count do
30: if DMC.nodes[i].frequency<freqThreshold

then
31: Enqueue(DMC.nodes[i])
32: DMC.count ← DMC.count +1
33: end if
34: end for
35: hrTemp ← hitrate
36: hitrate ← DC.accesses/accesses
37: if hrTemp<hitrate then
38: hrMeasure ← hrMeasure+1
39: else
40: hrMeasure ← 0
41: end if
42: if hrMeasure==hrCount then
43: hrCount ← hrCount ∗2
44: hitrate ← 0
45: hrMeasure ← 0
46: DC.accesses ← 0
47: LRU ← true
48: end if
49: end if
50: end if
51: end while

the entire caching mechanism shifts to a traditional
LRU i.e. all DC misses are brought into the DC. The
DMC keeps checking the popularity of incoming blocks
so as to observe whether the hit-rate to the DC increases
for hrCount number of times. If it does, it switches
back to the previous methodology. Even if it doesn’t
it still switches back to the original mechanism after
the updated hrCount number of times. This is because
the hitrate may have fallen because of a change in
workload and so FussyCache is introduced again to
see if it makes any gains. This switching back and
forth does not result in an exorbitant cost because as
the parameter hrCount is doubled during a switch, the
probability of switching back in the near future lessens.

The given pseudocode for the DMC in Algorithm 1
assumes that the DMC (implemented as an array of nodes)
has its own count data member that measures the number
of blocks present in it and the DC cache has a data
member calculating the number of accesses to it. hitrate and
hrMeasure measure the hitrate of the DC and the count of
the number of intervals for which the hitrate has deteriorated
respectively. LRU stores whether a switch to LRU has been
made. Finally, accesses keeps a measure of the total number
of accesses that have been processed till now.

D. Data Cache

The Data Cache (DC) is treated like a traditional LRU
cache in terms of its operation. Incoming blocks are placed
at the head of the LRU queue and evictions happen only on
the basis of the least recently used block. However, not all
blocks that are requested for are inserted into the DC. If a
certain block is not identified as popular by the DMC, then
it remains in the DMC until it is accessed freqThreshold
number of times. Evictions from the DC are not treated like
a conventional LRU. If it is a block that has been written
to, then it is written back to the storage device. However,
irrespective of a read or write, details of an evicted block
from the DC is stored in the DMC. This gives it a chance
to be popular again because a block that was popular in the
recent past may turn popular again in the near future.

IV. Benchmarks and Parameters

A. Workloads and Parameters

For evaluating our proposed mechanism, we used the
workloads provided in SPECSFS 2014 benchmark suite
[11](which is a file system benchmark). We used the 2
database workloads included in the suite (DBTABLE and
DBLOG) and also 2 other workloads - SWBUILD (software
build workload) and VDA (Video Data Acquisition). Along
with this, the SNIA Web Search workload was also tested

3

so as to observe the results on a more realistic workload.
We chose these five workloads to explore different mixtures
of reads and writes.

The database table workload has a read:write ratio of 4:1
while the software build workload has a read:write ratio
of 1:4. The SNIA Web search workload is a read only
workload. Finally, both Database Log and VDA are write
only workloads. All together, the set of workloads considered
here spans a large range with respect to read/write ratios
and access characteristics as further elaborated next.

During the warmup phase, the size of the DMC is
calculated so as to make sure that the blocks get appropriate
amount of time to turn "popular" before being evicted from
the cache. Also, a cache that is too large, results in more
traversal cost during the Identification phase.

TABLE I
AVERAGE REQUEST SIZE IN KB

Workload
DBLOG DBTABLE VDA SWBUILD SNIA

18 18 457 23 8*

V. Results and Discussion

We compare FussyCache against three existing caching mech-
anisms for comparison: (a) Sequential Adaptive Replacement
Cache (SARC) [6], (b) Adaptive Replacement Cache(ARC)
[12], and (c) the Least Recently Used (LRU) [3] cache. The
most widely used caching mechanism among these three is
LRU due to its simplicity (both in terms of methodology
and implementation) and also due to the fact that it performs
well over most workloads. However, LRU does not consider
frequency as a factor (LFU [13], a variant of it, does) and
also does not factor in the eviction history in its policy. ARC,
on the other hand, considers both recency and frequency as
deciding factors and keeps a separate ghost list that contains
recent evictions, thereby giving recent evictions a chance
to be a part of the cache again. SARC, is a variant of
ARC, which carries out prefetching by classifying blocks
as random or sequential (instead of recently or frequently
used). SARC has a separate ghost list too (called FreeQ)
which runs on a different thread, similar to FussyCache.

For the mechanisms being considered, it is expected that
SARC performs well in workloads that exhibit sequentiality.
ARC is expected to achieve a higher hit rate than LRU be-
cause of the fact that it considers both recency and frequency
unlike LRU. However, dealing with these other factors makes
ARC a more computationally heavy mechanism than LRU.
Hence it is expected to perform worse than LRU.

FussyCache was compared with the mentioned policies
across two different setups for the mentioned workloads:

1) Emerging NVME – ENVM: This setup involves a
first generation Intel Optane Memory as the backend
storage device.

2) Low Latency SSD – L2S2D: In this setup we have the
Samsung 970 Evo Plus SSD as the backend. It has a
higher latency than Intel Optane Memory but lower
than the Toshiba XG5 SSD.

1) Emerging NVME - ENVM: In this setup, our backend
device is much faster compared to the subsequent L2S2D
and HLS2D setups. The average read and write latency for
ENVM is in the range of tens of microseconds which is
almost ten times smaller than the average SSDs.

For the SNIA Web Search workload on ENVM(which is a
read only workload), we can see in Fig. 1 that only ARC and
SARC perform better than LRU but FussyCache performs
the best. This is due to the fact that FussyCache leverages
the frequently accessed blocks well but at the same time
serves the unpopular blocks from the backend device. ARC
does better than LRU and SARC because it also considers
frequency. But existing caching solutions take into account
only the frontend device where the cache itself resides and
cache every item accessed indiscriminately. They are not
guided by the backend device’s capabilities. FussyCache
performs almost 15% better tan ARC and close to 25%
better than LRU for this workload.

(a) ENVM (b) L2S2D

Fig. 1. Average Read Latency for SNIA Web Search Workload

The VDA workload (a write only workload) is interesting
due to its highly sequential nature. The large request size
seen in Table I also shows that a prefetching algorithm that
accounts for sequentiality in workloads may do well here.
And that is mirrored in the results observed for ENVM in
Fig. 5. SARC performs better than LRU and ARC by a huge
margin due to this aspect. However, FussyCache wins in
this case too as recently accessed blocks have a propensity
of getting accessed again in this workload i.e. it has an
inclination towards requesting the same starting block with
varying request sizes. Hence it outperforms ARC by almost
30% and LRU by about 20%. It beats SARC marginally in
spite of its simplicity since SARC is built for workloads
such as VDA which exhibit such high sequentiality.

For the Software Build workload (a write dominant
workload), ARC and SARC perform similarly, with LRU
again doing the best. FussyCache outperforms LRU by
almost 20% for reads and close to 17% for writes. Compared

4

(a) ENVM (b) L2S2D

Fig. 2. Average Read/Write Latency for DB Table Workload

to ARC and SARC, FussyCache does better by 28% for
reads and as much as 30% for writes.

For the Database Table (a read dominant workload) and
Log (write only workload) workloads, FussyCache does
perform better than LRU, ARC and SARC by about 5-10%
for reads and 5-7% for writes. This is due to the fact that it
detects that for the given workload, it cannot make as much
gains as it could in other workloads and hence it occasionally
shifts to a traditional LRU. This is carried out by the Cache
Change operation in the DMC. Hence depending on the
workload, FussyCache decides whether the trade-off between
the "fuss" in caching versus the serving of requests from the
low latency backend device makes sense. In cases where it
doesn’t, it shifts to the background allowing a traditional
mechanism to take over, which in this case is LRU.

In the Database Log workload, which is a write only
workload, FussyCache once again outperforms the other
three mechanisms with LRU performing the best among
them. It does better than LRU by about 13% which itself does
better ARC and SARC (though it beats SARC marginally).
The latter two are outperformed by FussyCache by almost
20% and 15% respectively.

2) Low Latency SSD - L2S2D: In this setup, our backend
device is slower than Intel Optane but its read and write
latency falls within the range of 90-200 microsecond
[14]compared to Intel Optane where the read write latency
range is between 20-50 microseconds.

We can see that even in such a setup FussyCache performs
well in most cases. For example, in the VDA workload for
L2S2D, as seen in 5, FussyCache performs better than LRU
and ARC and reports latency values comparable to SARC.
It makes gains over ARC by almost 15% and over LRU by
3%.

Similarly, looking at the Software Build workload for
L2S2D in 4, FussyCache performs almost as well as LRU
and even better than both ARC and SARC by about 15% in
writes and close to 18% in writes. LRU, ARC and SARC
mirror the behavior they exhibited between themselves for
ENVM in this case too.

Looking at the Database Table and Database Log work-
loads, we can observe that similar to the reported per-
formances for ENVM devices, all four of the caching

(a) ENVM (b) L2S2D

Fig. 3. Average Write Latency for DB Log Workload

mechanisms behave in a similar fashion. For Database Table,
the read performance between all four caching mechanisms
only differs by a maximum of 6% and for writes it is close
to 8%. For Database Log however, LRU outperforms all the
other mechanisms by almost 20% but the difference between
ARC, SARC and FussyCache is around 5%. Thus showing
that FussyCache is comparable to the other solutions at hand.

For the SNIA Web Search workload, FussyCache does
almost as well as LRU with a difference of only 4% between
the two. This proves that using FussyCache on lower latency
SSDs can be an effective solution too as we can see that
across different workloads FussyCache performs almost as
well as widely used caching mechanisms and even does
better in some cases. This is a significant result since we
expect that future SSD offerings will generally provide even
lower latencies than the current ones.

(a) ENVM (b) L2S2D

Fig. 4. Average Read/Write Latency for SWBUILD workload

(a) ENVM (b) L2S2D

Fig. 5. Average Write Latency for VDA Workload on ENVM and L2S2D

VI. Discussion

In this paper we argue that as the newer storage technolo-
gies with latencies in a few tens of microsecond become
commonplace, it becomes more desirable and efficient to
serve semi-popular cache blocks can be served directly from
the device rather than paying for the overhead of cache

5

management. The key challenge here is to separate the
popular from from semi-popular blocks in a light-weight
manner, which is precisely what our FussyCache solution
does.

We have compared FussyCache with three widely used
existing caching solutions - LRU, ARC and SARC over five
different workloads and shown that it performs better in all
the cases for ENVM technology with almost 25-30% gains
being observed. The mechanism does similar or better job
compared with traditional algorithms even for fast SSDs.

It is important to explore the endurance impact of Fussy-
Cache even though our assumption is that the endurance
should not be adversely affected by much due to FussyCache
mechanism. The reason is that mostly the less unpopular
(e.g., isolated) writes will go directly to the device; the
popular items that receive many writes will still be updated
in DRAM and then written back eventually to the device.

FussyCache has several parameters whose suitable setting
can be tricky. Thus, to be useful, it is important to make
FussyCache entirely auto-tunable. This requires automatted
learning of the appropriate parameters and adaptation to
phase change in the workload.

In reference [15], the authors describe a caching mech-
anism called BeliefCache that not only learns its hyper-
parameters initially, but also adapts them if the workload
characteristics change so drastically that the original pa-
rameters are no longer valid. Given the need for keeping
the mechanism lightweight, it is still necessary to examine
whether these mechanisms can be adapted for FussyCache
in order to make it truly autonomic.

Cache Change (i.e., switching from partial caching to full
caching and back) is an important component of FussyCache
to ensure that it "does no harm". We will examine how
to make this aspect more sophisticated without adding
significant overhead due to switching or due to maintenance
of relevant statistics.

We would like to know what could be lightweight and
effective solutions to the two problems we have discussed

[2] C. Mellor, “Intel gen 2 optane dc ssds are at least 50 per cent faster
and keep latency low.” [Online]. Available: https://blocksandfiles.
com/2019/09/26/intel-alder-stream-optane-ssd-performance/

above as the current values of the parameters are assumed to
be static. Also, the switching between mechanisms so as to
adopt the "no-harm policy" is another aspect to which we are
open to ideas. We would like to get ideas on how to make
the mechanism automatically revert to LRU if deployed on
a slow device.

References

[1] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour,
Y. J. Soh, Z. Wang, Y. Xu, S. R. Dulloor et al., “Basic performance
measurements of the intel optane dc persistent memory module,” arXiv
preprint arXiv:1903.05714, 2019.

[3] E. J. O’neil, P. E. O’neil, and G. Weikum, “The lru-k page replacement
algorithm for database disk buffering,” Acm Sigmod Record, vol. 22,
no. 2, pp. 297–306, 1993.

[4] N. Megiddo and D. S. Modha, “Arc: A self-tuning, low overhead
replacement cache.” in FAST, vol. 3. Washington, D.C.: USENIX,
2003, pp. 115–130.

[5] İ. Arı et al., “Acme: Adaptive caching using multiple experts,” 2002,
proceedings in Informatics 14.

[6] B. S. Gill and D. S. Modha, “Sarc: Sequential prefetching in adaptive
replacement cache.” Washington, D.C., 2005, p. 293–308, Proceedings
of USENIX ATC.

[7] B. S. Gill and L. A. D. Bathen, “Amp: Adaptive multi-stream
prefetching in a shared cache.” Washington, D.C., 2007, p. 185–198,
Proceedings of FAST.

[8] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Domino
temporal data prefetcher,” in 2018 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE, 2018, pp.
131–142.

[9] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Practical off-chip meta-data for temporal memory streaming,” in 2009
IEEE 15th International Symposium on High Performance Computer
Architecture. IEEE, 2009, pp. 79–90.

[10] S. Yang et al., “Tombolo: Performance enhancements for cloud storage
gateways,” in Proceedings of the 32nd International Conference on
Massive Storage Systems and Technology (MSST 2016), 2016.

[11] S. SPEC, “Benchmark, 2014.”
[12] N. Megiddo and D. S. Modha, “Outperforming lru with an adaptive

replacement cache algorithm,” Computer, vol. 37, no. 4, pp. 58–65,
2004.

[13] R. Karedla, J. S. Love, and B. G. Wherry, “Caching strategies to
improve disk system performance,” Computer, vol. 27, no. 3, pp.
38–46, 1994.

[14] B. Tallis, “The samsung 970 evo plus (250gb, 1tb) nvme ssd review:
92-layer 3d nand.” [Online]. Available: https://www.anandtech.com/
show/13761/the-samsung-970-evo-plus-ssd-review/3

[15] D. Ramljak, D. Abraham, K. Kant, and D. Voigt, “Modular framework
for data prefetching and replacement at the edge,” Proc. of IEEE

Edge Computing, Seattle, WA, June 2018.

6

https://blocksandfiles.com/2019/09/26/intel-alder-stream-optane-ssd-performance/
https://blocksandfiles.com/2019/09/26/intel-alder-stream-optane-ssd-performance/
https://www.anandtech.com/show/13761/the-samsung-970-evo-plus-ssd-review/3
https://www.anandtech.com/show/13761/the-samsung-970-evo-plus-ssd-review/3

	Introduction
	Related Work
	Implementation Methodology
	FussyCache Overview
	FussyCache Parameters
	Dynamic Metadata Cache
	Data Cache

	Benchmarks and Parameters
	Workloads and Parameters

	Results and Discussion
	Emerging NVME - ENVM
	Low Latency SSD - L2S2D

	Discussion
	References

