
Automated Configuration for Agile Software
Environments

Negar Mohammadi Koushki, Sanjeev Sondur, and Krishna Kant
Computer and Information Sciences

Temple University
Philadelphia, USA

{koushki|sanjeev.sondur|kkant}@temple.edu

Abstract—The increasing use of the DevOps paradigm in
software systems has substantially increased the frequency of
configuration parameter setting changes. This is generally a
very challenging problem due to the complex interdependencies
between various configuration parameters and calls for an
automated mechanism that can both run quickly and provide
accurate settings. In this paper, we propose an efficient dis-
crete combinatorial optimization technique for this purpose that
makes two unique contributions: (a) an improved and extended
metaheuristic that exploits the application domain knowledge
for fast convergence, and (b) the development and quantification
of a discrete version of the classical tunneling mechanism to
improve the accuracy of the solution. Our extensive evaluation
using available workload traces that do include configuration
information shows that the proposed technique can provide
a lower-cost solution (by ∼60%) with faster convergence (by
∼48%) as compared to the traditional metaheuristic algorithms.
Also, our solution succeeds in finding a feasible solution in
approximately 30% more cases than the baseline.

Index Terms—Configuration Modeling, Resource Allocation,
Resource Provisioning, Machine Learning, metaheuristics, Sim-
ulated Annealing

I. INTRODUCTION

The DevOps transformation of IT services is fueling a
radical change in how cloud services are conceptualized, de-
signed, and implemented [1]. The service oriented architecture
(SoA) and its manifestation in the emerging microservices
paradigm [2] attempt to reduce dependencies between services
to make their development and deployment more agile and
allow for easier maintenance and scalability. The motto of the
DevOps phenomenon is Continuous Integration and Develop-
ment (CI/CD) [3]; that is, the deployed services are constantly
being enhanced and tuned both with respect to their code and
run-time settings. Furthermore, the services are increasingly
being deployed in their own lightweight containers which
allow even the hardware resources assigned to the service
fungible at run-time.

The run-time settings, popularly known as Configuration
Parameters (CPs), play a key role in the functioning of
most software systems and are easily misconfigured due to
a variety of reasons including a lack of clear documenta-
tion/understanding of what they do, interdependencies across
them and lack of robust automated mechanisms to set them.
In traditional systems, their incorrect setting (or “misconfigu-
ration”) are responsible for up to 80% of down-times [4] and

up to 85% of the incidents [5], with one week on average for
root cause identification [4, 5].

The CI/CD process substantially increases this complexity
and the resultant potential for ill effects due to the need to
constantly tune the CPs as the service modules continuously
undergo changes. In the current agile software systems, config-
uration changes happen all the time; e.g., reported thousands
of times a day in Facebook [6]. Most of these are related to
“tuning” the CPs rather than drastic changes. Thus, an au-
tomated mechanism that can quickly define the configuration
settings (or verify proposed configuration settings) becomes
a crucial ingredient of the emerging DevOps drives software
development processes that continue to get adopted across a
large variety of application domains. The purpose of this paper
is to develop such a mechanism focused on the performance
and cost aspects.

Our Contributions: Owing to the complexity of perfor-
mance (and possibly cost) functions, we adopt a metaheuristic-
based discrete combinatorial optimization to solve our prob-
lem. Our key contributions in this regard are: (a) extending the
metaheuristic for efficiently solving the constrained optimiza-
tion problem that exploits the application domain knowledge
in grouping and choosing the parameters for perturbation,
(b) developing the classical notion of ”tunneling” in the
context of implicit, discrete performance function, and (c)
explore how and when the tunneling helps in an efficient
solution. Our extensive evaluation using available workloads
shows that the proposed technique can provide a lower-cost
solution (by ∼60%) with faster convergence (by ∼48%) as
compared to the traditional metaheuristic algorithms. Also,
our solution succeeds in finding an average of 30% more
additional solutions than the baseline.

The rest of the paper is organized as follows. Section II
reviews the configuration selection techniques and challenges.
Section III provides an overview of our proposed method. In
section IV, we describe the approach for selecting configura-
tion. Section V addresses the issues in configuration modeling
and then in section VI, we present our experimental evaluation
approach. We conclude the paper in section VIII.

II. CURRENT ART ON CONFIGURATION SELECTION

The current state of the art explored during our work shows
that configuration issues are related to resource provision-

ing and resource management [7, 8] techniques to optimize
latency, task completion time, data replication, and impact
on cache capacity, delay, and energy consumption. Our work
addresses recommending a suitable resource allocation (e.g.,
storage, compute, bandwidth) to achieve the desired goal (e.g.,
workload performance, energy, cost, size, etc.). Cloud resource
allocation is a challenging job since the final outcome like
Service Level Agreement (SLA) & Quality of Service (QoS)
requirements of workloads derives from the provisioning of
appropriate resources to cloud workloads. Ref. [8] highlights
various challenges and cites that the discovery of the best
workload–resource pair based on application requirements of
cloud users is an optimization problem. Ref. [9] addresses
this by using a metaheuristics approach to provision Cloud
resources for satisfying QoS.

To overcome the difficulty in characterizing the behav-
ior outcome (e.g predicting performance), several studies
have used Classification Regression Trees (CART)-based
model [10] and ML techniques to design a performance
influencing model (PIM) [11]. In our study, PIM is only
the first step to building a surrogate function to solve the
combinatorial optimization problem. Our work focuses on
choosing a set of CPs that satisfy user workload/performance
demands under given constraints. Supporting the complexity
in our configuration work, authors in [12] use an example of
Cloudlet infrastructure to show that configurations of Cloudlets
are very challenging because of the many unknowns pertaining
to the software mechanisms and controls.

Challenges in Configuration and Resource Allocation: In
studying the importance of the resource allocation mechanisms
in Cloud/Edge infrastructures, authors in Ref. [7] highlight
the algorithmic challenges in efficiently using the Cloud re-
sources (such as available computing, storage, and networking
infrastructures) to serve the workload and data. They show
that a sheer number of Cloud resources makes it difficult for
users to effectively optimize their parameters (i.e., resource
allocation) that ensures required QoS/SLA (e.g., performance,
latency, execution time) while keeping the associated costs
low. In Ref. [13], authors show that Cloud operators need
to increase resource utilization while maintaining good per-
formance. They state that it is difficult to achieve optimal
resource allocation because of: (i) uninformed over-provision,
(ii) the diverse/dynamic nature of applications, and (iii) that
the performance depends on multiple resources.

We address the dynamic resource allocation problem ca-
pable of allocating multiple resources (such as CPU, mem-
ory, network bandwidth, and storage (I/O) bandwidth, etc.)
to achieve the required QoS/SLA (e.g., throughput, latency,
execution time) with minimal costs (metrics like deploy-
ment/maintenance cost ($), energy, power, etc.). Instead of
relying on simulation tools, we demonstrate the effectiveness
of our solution using publicly available data-sets (see Table. II)
from real-world environments like Cloud & Edge applications,
HPC workloads, application services, etc.

III. OVERVIEW OF PROPOSED METHOD

In this paper, we focus on the problem of determining
configuration parameters that minimize some cost functions
subject to some minimum performance requirements. Essen-
tially the same methods apply if instead, we try to maximize
performance for a given cost constraint. In a virtualized
environment, the cost may refer to either the actual cost
charged by the provider (e.g., AWS) or costs that we assign
to various resources including CPU cores, memory BW and
size, I/O rate, storage space allocated, etc. The appropriate
configuration settings must often be determined quickly and
automatically to cater to the CI/CD needs. Our work addresses
some specific questions raised by the DevOps team and further,
supported in Ref. [8], wiz: (i) How to design the resource
allocation mechanism to provide dynamic scalability at CPU,
network, application-level, etc.?, & (ii) How to minimize the
cost and optimize the resource allocation simultaneously?

Regardless of whether the performance is used as an objec-
tive function or constraint, it is likely to be a very complex
function of various configuration parameters; thus accurate
analytic or simulation models are likely to be very difficult
to construct and time-consuming to run. Therefore, we turn
to a machine learning (ML) model that can generally be
queried very fast to satisfy the needs of CI/CD. The main
drawback of an ML model is the need for substantial amounts
of data for training that mostly covers the parameter ranges
that are like to be used in practice. A beneficial side-effect
of the configuration dynamism in DevOps environments is the
availability of data with many different configuration settings.
At the same time, the dynamism is likely to be limited to
sensible ranges for an operational system. Thus the ML model
for performance as a function of configuration parameters that
are routinely retrained can fulfill our needs well (commonly
referred to as PIM [11] and shown as “forward problem” in
Fig. 2a). Although the cost model could also use the same
approach, it is likely to be much simpler, and thus simple
analytic expressions for it are generally adequate. We assume
this to be the case in the rest of the paper.

A. Metaheuristics Based Modeling

It has been demonstrated in [14] that it is difficult to build
an ML model directly for the reverse problem of setting
the configuration parameters (shown as “backward problem”
in Fig. 2a); therefore, we will devise a method that uses
the performance and cost models directly to estimating op-
timal configuration parameter values. Because of the lack of
convexity of the performance function in general, a suitable
approach is to use a discrete combinatorial optimization using
metaheuristics [15]. All methods aim to explore the state space
efficiently while avoiding being trapped in the local minima, of
which there could be many. Fig. 1 illustrates the search process
pictorially with the x-axis representing the iterations and the
y-axis the solution obtained in each iteration. The algorithm
will keep track of the minima obtained so far and may or may
not discover the global minima until the maximum iteration
count (a hyper-parameter of the algorithm) is reached. Using

2

public domain data from several Cloud environments, we
demonstrate the effectiveness of our solution with two distinct,
yet equally important metrics: (i) the speed in searching the
huge configuration space and “quickly” selecting a suitable
solution, & (ii) ensure that the selected solution is a minimum
cost solution. We explain this further in the evaluation section
(Section VI-A).

Since our problem involves constrained optimization, we
also need to ensure that any accepted solution is feasible.
In such a setting, it is always helpful to avoid generating
infeasible solutions in the first place, but this is not always
possible. Regardless of the metaheuristics used, the stochastic
optimization techniques move from the current best solution
to the next solution that is both feasible (i.e., satisfies the
constraints) and is better. Ideally, we would like to choose
the next solution that is likely to have these characteristics
without considering solutions that are unlikely to be useful.
This is where domain knowledge is crucial. Often, domain
knowledge consists of an abstract relationship between CPs
or rules of thumb that can be evaluated easily. However, since
they are fuzzy and not strictly required, they cannot be used
as formal constraints. Another kind of domain knowledge
concerns the varying influence of parameters that can guide
which parameters need to be perturbed and by how much to
get to the next proposed solution. Yet another aspect concerns
an estimate of the amount by which one needs to move to get
out of the region of local optimality to land in another region
that can possibly provide a lower local optimum.

Fig. 1: Stochastic Tunneling.

B. Tunneling in Metaheuristics

A useful notion in stochastic optimization is tunneling [16]
illustrated in Fig. 1, where we ”tunnel” from local minima to a
deeper local minima directly [17]. Traditional tunneling works
in the continuous parameter state space with explicit objective
function f(x) where x is the input vector (i.e., configuration
vector in our case). It also assumes that f(x) has the first
two derivatives. The method works in two steps: (a) find the
local minima, say x∗, using the steepest descent algorithm
from the current point, (b) minimize the modified function
h(x) = [f(x)−f(x∗)]/‖x−x∗‖α with α ≥ 1 to determine the
next solution, say x′. It can be seen that with larger α, nearby
points are penalized. (The choice of α can be problematic,
and other approaches have been investigated [18]). Thus if we
choose x′ based on the gradient of h(x) away from x∗, we
are more likely to go towards a deeper minima than at x∗.

Although such a mechanism cannot be applied this tech-
nique directly to our problem, due to implicit f(x) and discrete
parameter space, we show that such a technique can improve
the solution performance considerably.

IV. COMBINATORIAL OPTIMIZATION BASED
CONFIGURATION SELECTION

A general formulation of the configuration selection prob-
lem is as follows. Let CP denote the configuration defined as
the vector of user-settable parameters ~x and vendor-selected
(usually hidden) parameters ~y. These along with the workload
parameters ~w determine the desired objective function φ
subject to some constraints. That is,

~CP = {~x, ~y} (1)

φ = f(~w, ~CP) (2)

gi(~w, ~CP) ≥ 0 i = 1, 2, ..,K (3)
where f() could represent performance or cost, and gi() is
the ith constraint involving the workload and configuration
parameters. The functions f() and gi()’s are usually quite
complex and may not be expressible explicitly. Our study is
supported by Ref [19], wherein authors state that performance
modeling is complex since the running time (performance or
throughput) is affected by the number of resources in the
Cloud configuration in a non-linear way, and performance
under a Cloud configuration is not deterministic. It is also
worth noticing that the configuration space Ω is often discrete,
with intermediate values being practically infeasible, even if
they are conceptually meaningful. For example, if the memory
modules for the systems at hand have a minimum granularity
of 16GB, an installed memory of 24GB is infeasible. Thus,
defining continuous or differentiable extensions of the func-
tions f() and g() is neither straightforward, nor meaningful.
Thus, the traditional tunneling structure is not possible; also,
while one could estimate the local gradient by evaluating the
functions at nearby feasible points, the value of local search
is less clear.

Behavior f() is expressed as the user expectation and can
refer to performance, latency, throughput, etc. The constraints
can represent the cost factor of such a system, heat dissipated
or cooling needs, energy consumed, physical size, etc. Often,
it is desirable to optimize multiple parameters simultaneously;
however, in this paper, we consider objectives and constraints
as a singular function.

A. Basic Approach

Fig. 2 shows the overall scheme explored in this paper.
Given a set of CPs, the first step is to define an ”oracle,” or
a model for the forward problem of performance prediction
based on the settings of CPs. As discussed in [20], statistical
ML techniques work quite well for this. Authors in Ref. [14]
have also shown that the ML techniques do not work well
for the backward problem of configuration selection and
require large amounts of training data. To overcome the above
problem, we take advantage of the corresponding training data
to determine a relative ranking of importance of various pa-
rameters via Principal Component Analysis (PCA) or similar

3

analysis as shown in Fig. 2b. This helps in both confirming
and applying the domain knowledge such as (i) various re-
lationships (e.g., higher CPU speed requires lower memory
latency), (ii) generic rules of thumb (e.g., additional 64MB
of memory per additional VDI client), (iii) system-specific
ones that have been observed or (iv) can be deduced from
the training data. It is important to underscore the importance
of domain knowledge here since a blind application of these
techniques is likely to yield incorrect or misleading results.

(a) Forward & Backward Problem

(b) Design of Algorithms

Fig. 2: Basic Approach: Design of Solution.
The problem to be solved is now to select a configuration
~CP (or ~x a few user-settable configurations) that provide a per-

formance p above the lower bound (user desired performance
pu) while minimizing the cost of the solution. The choice
of parameter values in ~x can directly or indirectly affect the
objective function, i.e., ω cost of the configuration. This is
shown as z() depicting the “Backward Problem” in Fig. 2a.

We now define the constraint as the desired performance
pu:

p = φ ≥ pu (4)
where p is the expected performance from configuration ~x.
The objective is to find such a configuration ~x at a minimum
cost.

min(g(~x)) (5)
The “cost” of a configuration can represent a user’s desired
metric, such as the deployment cost, power consumption,
cooling requirements, etc. Data for cost function can be
derived from vendor specification for hardware server and
allocated resources (e.g., disk capacity) or other suitable
function g(). For example, kth configuration ~xk for some
choice of parameters such as number of CPU cores, core
speed, memory bandwidth, IO bandwidth, storage capacity,
etc. has a cost g(~xk).

Given the non-convex and non-monotonic influences of
various parameters, the use of combinatorial optimization is
natural for solving the backward problem (shown as z() in

Fig. 2a). In general, this optimization could be either determin-
istic or stochastic, where the latter allows for uncertainty in the
objective function. Although our interest is in the deterministic
case, uncertainties arise naturally in real-world problems (e.g.,
the cost of the solution better described by a distribution rather
than a single value). In the stochastic case, the objective is
generally to use a statistical measure (e.g., expected value) so
that essentially the same methods apply in both cases.

All stochastic methods explore a sequence of next states
to find a better solution with different techniques to make a
trade-off between the expense of exploration (i.e., number of
iterations, cost of evaluation) and the quality of the solution.
For the latter, the algorithm must necessarily consider states
where the objective function is worse than the optimum found
so far, which means that a monotonic convergence is generally
not possible.

Because of their stochastic nature, these algorithms do
not have any guarantee that the result will be optimal for
every run. Many comparative studies have been put forward
to prove or disprove the efficiency of a particular method
[21]. Therefore, the focus of our research work is not to
compare algorithms; rather, we show that embedding domain
knowledge into stochastic methods can help the algorithm to
converge into a solution faster (than an uninformed algorithm).
Our work focused on studying algorithms for their conver-
gence speed and their capacity to find good objective function
minima. On this front, we adapted our solution to a familiar
stochastic method, wiz. Simulated Annealing (SA). We show
the modifications in Table. I and explain such modifications
in the following sections.

B. Emulating Tunneling

To apply the Tunneling approach to our context, we first
seek the local minima (step 1), followed by an intelligent
perturbation based on the sensitivity to take us further away
from the current minima (step 2). To prepare for this, we
first determine the relative ranking of each CP in terms
of its influence on the objective function and the complex
constraints. A pure data-driven method for doing this is the
standard PCA and should work well assuming a sufficiently
large data-set. Starting with the most dominant parameter, we
form a group by pulling in other parameters known to be
related to it (based on domain knowledge). We then start with
the next most dominant parameter and form the next group
until we have covered all the parameters. Then our approach
with “smart” tunneling can be described by the following two
steps:

1) We approach the local minima by considering the vari-
ation with respect to the leader of the first group. The
gradient needs to be determined by taking a few samples.

2) The tunneling phase then perturbs each group leader in
proportion of the PCA metric and adjusts all others in the
group based on the known relationships

A stochastic optimization process works by randomly jump-
ing from the current state xi to a new state xi+1 based on some
probability factor ρ, with an aim to find local minima x∗ that

4

minimizes the objective function f(x). We apply the above
approach with tunneling by enabling the stochastic algorithm
to circumvent the local minima points and rapidly move from
an area of shallow minima (point (a) in Fig. 1) to a region of
deeper minima (point (d) in the same figure), thereby allowing
for faster exploration of solution space and faster convergence
to a good solution. With a configuration problem at hand,
as our objective function cannot be characterized by a direct
analytical function, we use the performance prediction oracle
(a black box) function as an objective function.

We explore ways to tunnel through the shallow minima
(point (b) in the same figure) and avoid the slow dynamics of
the complex objective function. Such tunneling mechanisms
should invariably use the domain knowledge to intelligently
jump the local barriers and avoid uninteresting space (i.e.,
avoid points (d and e) in the same figure). We group the design
variables together as a discrete space tunneling mechanism to
aid the algorithm from being trapped at a local minimum and
(jump through or) tunnel out of the minimum. We present
the details in the next sections in context to the algorithm we
explore.

C. Generic Design Approach Summarized

The approach described above can be generalized indepen-
dent of the data-set and domain as:

1) Run experiments to collect the data with relevant config-
urable parameters and observable outcomes.

2) In the absence of a clear analytical function to describe
the relationship between the configurable parameters to
the outcome, use a suitable ML model to design an
“oracle” as a prediction engine (a.k.a PIM).

3) Use PCA metrics from the data, determine the relative im-
portance of design variables and group attributes based on
domain knowledge to avoid exploring undesired spaces.

4) Use the above PIM model to represent the objective
and/or constraint function in a stochastic algorithm.

5) To explore new design states, use PCA metrics as prob-
ability factors and perturbative the variables in groups.

6) Verify new state satisfies constrain using ML-based oracle
as a tool.

7) Accept/Reject the current design state based on satisfying
criteria.

We explain the modification to a familiar metaheuristics-
based stochastic process, i.e., SA, below.

D. Modified Simulated Annealing (mSA)

SA is a general probabilistic local search algorithm gener-
ally used to solve difficult optimization problems. The pseu-
docode [22] for generic SA (gSA) is given in Algorithm 1. In
SA, a state refers to a set of design variables, and a neighboring
state refers to a set of values relatively closer to current design
variables. In SA, entropy is represented as the cost function
that has to be minimized. An acceptable state is a solution to
the problem that is being solved.

The SA method has been widely used since the cost function
can be easy to put into practice [22]. Our SA algorithm uses

Algorithm 1: Pseudocode for SA [22]

1 initialize(temperature T, random starting point) ;
2 for i in T do
3 p = select point from neighborhood(i) � ;
4 currentCost = compute currentCost at(p) ;
5 δ = currentCost - previousCost ;
6 if δ ≤ 0 then
7 accept neighbor point(p) ;
8 else
9 accept with probability exp(-δ/T) � ;

10 T = β * T � ;

design variables from the configuration (~x) to represent the
state. The entropy of the system is defined as the cost of
the current state (i.e., cost of the configuration g(~x)). The
gSA steps in Algorithm 1 can be summarized as follows:
(i) we first start with an initial annealing temperature (T0)
and a random design state (line 1), (ii) we search for the
next state depending on the annealing temperature Tk and
random distribution (line 4), (iii) we compute the difference
in entropy (δ) between the current state and past state (line
5), and probabilistically accepting the current state depending
on Boltzmann probability factor (line 6· · · 9). In line 9, if the
current solution is accepted, we apply tunneling logic to search
for better local minima. The annealing scheme is defined in
line 10. The algorithm stops after reaching a defined cooling
temperature (line 2).

Our solution is based on very fast simulated annealing
(VFSA) presented by Xu [23], which enhances both the
annealing temperature (line 10) and the perturbation model
(line 4). Lee [24] and others have discussed VFSA in detail
and show the advantages of VFSA over SA. To speed up the
convergence rate of SA, VFSA uses the Cauchy distribution
function as the perturbation [24] which is able to realize
a narrower search as the iterative solution approaches an
optimum solution, which accelerates the convergence speed
[23]. Our enhancements to the basic generic algorithm are
illustrated in Table. I.

TABLE I: Very Fast Simulated Annealing Functions

Entity gSA mSA
Annealing
temp Tk

T0 ∗ exp(−α(k − 1)1/n)

Entropy
change δ exp(

ci−ci−1

Tk
) (

ci−ci−1

Tk
)3

Acceptance
Probability ρ

1,if pi ≥ pu
1,if δ ≤ U(0, 1)
0,otherwise

1, ifpi ≥ pu&ci ≤ ci−1

1 ,if δ ≤ U(0, 1)
0 ,otherwise

Perturbation
Model ζj

Tk(µ− 0.5)
[(

1 + 1
Tk

)|2µ−1|
− 1
]
(Bj −Aj)

Selecting
neighboring
state (si+1)

{
random new state(), if ρ = 1

ζj , otherwise

Design
Variables Individually varied Varied as a group

We discuss the supporting functions of gSA and mSA

5

in Table I using the following notations: k is the current
iteration, n is the number of design variables, T0 is the
initial annealing temperature, α is the damping coefficient
(0 < α < 1), µ and U are uniform random variables between
0 and 1, (Bj − Aj) is the range of jth design variable
(1 ≤ j ≤ n), ~xi is the configuration (design variables) at
ith state, ci is the configuration cost at ith state, pi is the
predicted performance of configuration ~xi at ith state, and pu
is user given performance.

mSA uses the annealing scheme Tk and Cauchy distribution
perturbation model ζ from VFSA (see Table I). For acceptance
probability ρ, mSA makes a slight modification to accommo-
date the case where the next solution has the same performance
but lower cost. If the acceptance probability for the current
state is 1, a new random state is chosen (to avoid getting
stuck in local minima) else a new state in the neighborhood
is chosen.

V. CONFIGURATION MODELING ISSUE

Given the importance of addressing the configuration prob-
lem, we applied the above design (i.e., combinatorial optimiza-
tion based configuration selection) to several publicly available
data-sets (See Table. II). As these are published data-sets from
various studies, we have no control over the data collected;
experiments run, CPs, variability, etc. We explain these data-
sets briefly below.

A. Cloud/Edge Storage Data-set (ES)

Edge computing [7] offers computation & storage at the
very edge of the network, close to where data is produced and
has recently emerged as a way to reduce latency and limit
the load that is carried to higher layers of the infrastructure
hierarchy. These platforms (henceforth referred to as ES) are
constrained by limited resource capacity and placed between
the Edge/IoT/user applications and the Cloud platform [7, 20].
ES is usually deployed at a branch office or remote location
and has access to a rather limited local compute/storage
and is connected to a Cloud data center over the Internet.
ES essentially uses local storage as a cache for the remote
Cloud storage to bridge the gap between the demand for
low-latency/high-throughput local access and the reality of
high-latency connection to the Cloud with unpredictable and
usually low throughput [7, 20]. Resource allocation for the
ES is challenging since they have to dynamically adapt to the
requirements of the end-users’ applications and end-devices
(e.g., cars, drones), taking into account the resources’ char-
acteristics in terms of processing latency, capacity, security,
location, and cost.

We address the configuration selection problem in Edge
platforms using data published in Ref. [20]1. The authors
capture the performance throughout the ES server for various
configuration settings (combination of CPU cores, core speed,
memory, storage allocation & network capacity, etc.) for var-
ious data-transfer request sizes, i.e. different workloads such
as Health monitors, MRI/CT Scans, Mammography images,

1[ES] https://www.kkant.net/config traces/CHIproject

etc. The observed performance of the ES denoted as φ, is
influenced by its CPs (~x in Eq. 2) and the given workload
(~w). The CPs include computing resources (cores, CPU-speed,
memory capacity, etc.), IO path (memory bandwidth, disk IO
bandwidth, etc.), buffer space allocation (cache space, meta-
data space), etc. A full description of the ES system, various
CPs influencing the behavior, workloads, etc., is given in
Ref. [20]. We represent the ES configuration as a combination
of required compute and storage resource - number of cores
nc, core speed cs , memory capacity mc, memory bandwidth
bw, and disk IO rate di. Workload can be defined by the
request arrival rate ar, request size rs, and the metadata size
ms. Now, in the context of an ES system being studied, we
can express Eq. 2 more clearly as: ~x= {nc, cs,mc, bw, di} and
~w = {ar, rs,ms}. The research question would then be to find
the suitable values for ~x for a given ~w that satisfies the given
constraint (Eq. 4) at a minimum cost (Eq. 5).

B. Configuration Modeling for BitBrains Data Center (BB)

The other publicly available data-set used in this research
is BitBrains2 workload trace [25] containing the performance
logs of 1,750 VMs from a distributed data center from
BitBrains, which are collected over 5000 cores and 5 million
CPU hours accumulated over four months. This data-set (see
Table II) provides specialized interactive services and batch
processing workloads in a Cloud environment for managed
hosting and business computation, including leading banks,
insurance companies, credit card operators, etc.

Workloads for Evaluating BB: Authors [25] conduct a
comprehensive characterization of both requested and actually
used resources, using data corresponding to CPU, memory,
disk, and network resources. The initial configuration CP
of each VM present in these traces is characterized by the
attributes shown in Table II. With limited knowledge of the
details of the data-set, we formulate the BB VM configuration
as a combination of required compute, storage, and network
resource - number of cores nc, memory capacity mc, network
receive bandwidth nwrd, and network transmit bandwidth
nwwr. We characterize the workload as the load on the storage
disks as read request rate dskrd and write request rate dskrd
and observed behavior (φ) as the CPU usage (%).

We can now represent the configuration problem as selecting
the right combination of configuration values (i.e. resources
~x = {nc,mc, nwrd, nwwr}) for a given workload (~w =
{dskrd, dskwr}) to satisfy the user defined conditions (Eq. 4
and Eq. 5).

C. Configuration Modeling for Enterprise Data-set (EE)

We evaluate our work using three Cloud applications
(Apache, SQLLite, and Berkeley DB) from Ref. [11, 26, 27,
29], by commonly grouping them as Enterprise Data-sets3,4

(EE). Apache HTTP Server is a highly popular web server. Xu
et al. [30] report that the Apache server has more than 550

2[BB] http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains (RND500)
3[EE] https://github.com/ai-se/Reimplement/tree/cleaned version/Data
4[EE] https://goo.gl/689Dve (RawData/PopulationArchives)

6

TABLE II: CPs, Workload and Output of the Data-Sets.

Data-Set Domain CPs ~x Workload Characteristics ~w Output φ
ES [20] Cloud

Storage
No. of Cores, Core Speed, Memory Capacity, Memory
Bandwidth, Disk IO Rate

Request Arrival Rate, Re-
quest Size, Metadata Size

Performance

BB [25] Virtual
Machines

No. of Cores, Core Speed, Memory Capacity, Network
Data Rcvd., Network Data Transmit

Disk Read Throughput, Disk
Write Throughput

CPU Usage (%)

Apache [11] Web
Server

Base, KeepAlive, Handle, HostnameLookups, Enable-
Sendfile, FollowSymLinks, AccessLog, ExtendedSta-
tus, InMemor1

N/A Performance

SQLLite
server [26]

SQL
Server

SetCacheSize, StandardCacheSize, LowerCacheSize,
HigherCacheSize, LockingMode, ExclusiveLock, Nor-
malLockingMode, PageSize, StandardPageSize, Lower-
PageSize, HigherPageSize, HighestPageSize· · · · · ·

N/A Performance

Berkeley
DB C [27]

Embedded
database

havecrypto, havehash, havereplicatio0, haveverif1,
havesequence, havestatistics, diagnostic, pagesize,
ps1k, ps4k, ps8k,ps16k, ps32k, cachesize, cs32mb,
cs16mb,cs64mb, cs512mb

N/A Performance

MIT [28] HPC Env. CPU Frequency, Resident Memory Size, Virtual Mem-
ory Size

Amount of Data ReadWrite
(MB)

CPU Util. (%)

parameters and many of these parameters have dependencies
and correlations, which further complicates the configuration
problem we address here. Reference [11, 29] narrows the
CPs down to only nine CPs as given in Table. II. Berkeley
DB (C) [27] is an embedded key-value-based database library
that provides scalable high performance database management
services to applications. SQLLite [26] is the most popular
lightweight relational database management system used by
several browsers and operating systems as an embedded
database. In producing the data-set, the authors [29] stress the
application to maximum workload and observe performance
data for various configurations. Authors [27, 26] have used
18 CPs for BDBC and 29 CPs for SQLLite data-sets. This
expands the configuration space Ω to a larger degree, and the
results show the efficacy of the proposed solution in such a
large configuration space.

D. Configuration Modeling for MIT Cloud Data Set (MIT)

MIT published a rich data-set5 from their Supercloud petas-
cale cluster [28] running various HPC workloads. This huge
(2TB data) data set contains time-series data of the scheduler,
file system, compute nodes, CPU, GPU, and sensor data from
physical monitoring of the facility housing the cluster itself.
We used the 2nd partition data-set with 480 CPU nodes (2x24-
core Intel Xeon Platinum 8260 processor), each with 192GB
of RAM and a Lustre high-performance parallel file system
running on a 3-petabyte Cray L300 parallel storage array
(See Table.IV Slurm Time Series Data). The data attributes in
this work comprises: CPU frequency, residual memory, virtual
memory size, CPU utilization, disk IO, etc. We now propose
the resource allocation (configuration) question as: ”finding
the design variables (node number, VM-Size, CPU Frequency,
RSS Memory Size) for HPC workload (given as ReadMB &
WriteMB) for a required CPU Utilization (Constraint).” We
demonstrate the efficacy of the proposed solution for large
data-sets.

5[MIT] https://dcc.mit.edu

We refer readers to the detailed literature at Ref. [11, 26,
27, 28, 29] for a full description of the data-set(s). With our
problem at hand, the problem (Eq. 2 and Eq. 3) reduces to
finding the best configuration (~x) for a given workload (~w)
and a user given performance (pu) at minimum possible cost.

VI. EVALUATION

A. Metrics for Evaluation

Using the above data-sets, we evaluate the efficacy of
our solution in finding a satisfying solution with two key
metrics: (M1) the number of calls to the performance function
(a.k.a oracle), and (M2) the minimum cost of the selected
configuration (i.e Eq. 5). Metric M1 is important as it relates
to how fast the algorithm can find an optimal set of parameters
from the vast configuration space Ω. Metric M2 may refer
to the monetary cost ($$) of the selected physical config-
uration, resource consumption of the selected configuration
in a virtualized environment, or some other attribute (e.g.,
energy consumption, provisioning difficulty, etc.). Naturally,
metric M2 is generally much more important than M1 (the
computation time), but there are two situations that make M1
very important: (a) frequent changes in configuration, which
is quite common in current Clouds, selection/change happens
frequently, and (b) models (oracles) with long running times.

We executed 100s of test cases across all the data-sets, each
test case Ti refers to a unique combination of ~wj and φk in
the data-set. We discuss the evaluation results using M1 and
M2 metrics w.r.t the three approaches discussed above, i.e. (a)
Generic Simulated Annealing (gSA), (b) Modified Simulated
Annealing (mSA), and (c) Modified Simulated Annealing with
Tunneling (mSA(T)).

B. Performance Oracle

The efficiency of ML algorithms depends on a variety of
factors, including the input attributes and hyper-parameters
(e.g., regularization parameters, learning rate, etc.), and it is
generally not possible to characterize which algorithm works
the best in a given situation [31]. Therefore, we tried several

7

models and ultimately settled on Logistic Regression, as it
consistently performed well and beat others in most workloads.
An extensive analysis (e.g. k-fold validation) of the model
ensured that it does not suffer from under-fit or over-fit.

C. Using Domain Knowledge to Group Attributes

We incorporate domain knowledge in the algorithm by
dividing the design variables into groups based on their level
of interdependencies. That is, the design variables within
a group show strong interdependence and thus should be
set collectively, but the settings across groups can be done
independently. In theory, such grouping can be done purely
in a data-driven manner (e.g., by using clustering techniques),
but this is likely to result in spurious groups unless we have
a large amount of data covering full ranges of various CPs
and the clustering algorithm does not result in anomalies. The
value of domain knowledge is to do a suitable grouping either
entirely manually or by coercing the clustering algorithm to
prefer certain groupings over others.

TABLE III: Grouping Design Variables for Various Data-Sets

Data-Set Group Design Attribute Pairs

ES
Group G1 Number of Cores, Memory capacity
Group G2 Core speed, Memory bandwidth
Independently
varied

Data cache, Disk IO rate

BB Group G1 Number of Cores, Memory capacity
Independently
varied

CPU capacity, Network data trans-
mit, Network data received

Apache
BDBC
SQLLite

Independently
varied

All CPs

MIT Group G1 Virtual memory used by process,
Resident memory footprint set size

Independently
varied

CPU clock frequency

Fig. 3: Histogram of Cost for ES
In any configuration context, we are likely to have sev-

eral generic and usage-specific insights into the system. For
example, in computing infrastructure, a faster CPU must be
paired with a faster DRAM; else, the CPU will simply stall
waiting for the memory. A faster disk is also important, but
much less so, since the IOs involve a context switch whereas
memory access does not. Similarly, more CPU cores doing
independent work will likely need more memory, and for
workloads involving remote IO, both network and IO speeds

Fig. 4: Histogram of Cost for MIT

Fig. 5: Histogram of Cost for BB

must increase in tandem. Grouping of CPs based on insights
avoids exploration of states that are unlikely to be useful and
thus is expected to both speed up the convergence and lead to
better solutions within a given number of iterations. As shown
in Table III, ES, BB, and MIT data-sets are grouped according
to the interdependence between design variables. Since the

Fig. 6: % Improvement in Solution Cost

Fig. 7: % Improvement in #calls to Oracle

8

Fig. 8: Execution Time for Different Data-sets

Fig. 9: % Improvement in % cases that provide a solution
(gSA vs. mSA(T))

trace description doesn’t give much information about the
configuration or workload, we have grouped the other data-
sets independently (Apache, BDBC, and SQLLite).

D. Efficacy of the algorithms (gSA, mSA and mSA(T))

We use the gSA algorithm as the baseline, as it presents the
naive (or uninformed) stochastic method of searching a wide
configuration space for a set of suitable CPs.

In our evaluation for metric M2, the minimum cost of the
solutions with mSA(T) was much less (hence better/desired)
than the solution found by mSA or gSA (shown in Fig 6).

Detailed results are shown in Fig. 3, 4, 5 for a few data-sets
(ES, MIT, and BB respectively), where we plot the improve-
ment in the solution cost provided by our two algorithms (mSA
and mSA(T)) over the baseline uninformed algorithm gSA.
Here the X-axis refers to the cost of mSA and mSA(T) divided
by the solution cost of gSA, and expressed as a percentage.
That is, the buckets for ≤ 100% represent an improvement
over gSA, and > 100% represent a degradation. The y-axis
is the count of test cases whose solution cost falls into that
bucket – again, normalized so that it all adds up to 100% of
the test cases. These charts are produced by considering 100s
of test cases and thus represent an extensive exploration of the
configuration space.

Fig. 3 in ES results shows that in the 1st group (0-10%),
mSA achieved the solution with ≤ 10% of the baseline cost
for 15% of test cases; and mSA(T) further improved this to
22% of test cases. The maximum improvement observed was
in a few cases where the cost of mSA(T) was only 2% of the
cost provided by gSA! Fig. 4 in MIT results also shows that
in the 2nd group, mSA achieved the solution with ≤ 20% of

the baseline cost for 0% of test cases, but mSA(T) improved
on that to 4% of test cases.

Similarly in Fig. 5 in BB results, in the 6th group (81 to
100%), mSA cost was about 61-80% of the cost of the baseline
in about 17% test-cases; and mSA(T) improved this in about
22% of test-cases. The final group (> 100) in all the sub-
graphs show cases where gSA cost was better than mSA or
mSA(T); however, these cases were small in the case of an ES
and MIT. With BB, the evaluation showed that mSA(T) failed
to get minimum cost in about 30% of the cases (compared to
gSA). Note that because of the inherent randomness in the way
the states are explored, no stochastic algorithm can provide a
universally better result in all cases.

Fig. 6 shows that both of our algorithms (mSA and mSA(T))
provide a lower-cost solution in comparison with gSA by
∼50% and ∼60%, respectively. The solution cost for the ES,
BB, Apache, SQLLite, BDBC, and MIT data-sets is improved
in range 25% – 77% by mSA, and in range 47% – 81% by
mSA(T).

Fig. 7 shows the improvement in the number of calls to the
performance Oracle. It is again seen that mSA/mSA(T) consult
the performance Oracle significantly fewer times, which can
be significant if running the performance model becomes
expensive.

Fig. 8 shows the run-time of the three algorithms (gSA,
mSA, and mSA(T)) for various workloads. (This is the time
elapsed until the solution stops improving, but limited to
cases where the solution is indeed found.) The results show
that mSA and mSA(T) beat gSA even here, although by
rather small amounts of 12% and 6% respectively. The more
significant observation, however, is that the run-times are fairly
small in all cases, which is essential for frequent configuration
changes. Thus we expect that even with much more complex
situations, the mechanism would be able to determine the
suitable configuration rather quickly thereby satisfying the
needs of DevOps related auto-configuration.

Finally, Fig. 9 compares the ability to find a solution within
certain number of iterations. For this, we choose 250, 500, and
1000 as the limits on #iterations. The key reason to consider 3
different values is to ascertain that the results are not an artifact
for a given iteration count. For 1000 iterations, gSA is success-
ful in only 75% of the cases, but mSA/mSA(T) are successful
in 98% and 97% of the cases respectively. Fewer iterations
show an even better improvement of mSA/mSA(T) over gSA,
although the absolute success rate will surely decrease with
#iterations. All in all, unlike gSA, mSA/mSA(T) succeed in
finding the solution in almost all cases, find solutions of
significantly lower cost (see Fig 6), and even run somewhat
faster (see Fig. 8).

VII. DISCUSSIONS

...Add here...

VIII. CONCLUSIONS

In this paper, we presented an efficient methodology to
recommend optimal configurations for the emerging DevOps

9

environments with implicit performance function and cost
constraints. We propose an improved metaheuristics-based
approach enhanced by both the domain knowledge and smart
tunneling techniques. We applied the technique to several
real-world traces from various publicly available Cloud en-
vironments where configuration information was included in
the data-set. The results show that the proposed mechanism
outperforms a standard naive uninformed approach by 44-
81% (depending on the domain and data-set) in terms of the
cost of the solution, converges faster by 28-65%, and still run
somewhat faster.

The key reasons for such performance gains include the
following. First, we compute entropy as a quadratic function
to give us a wider choice of acceptance which is able to
better avoid getting stuck at local minima, Second, we intelli-
gently group the attributes which avoids exploring unnecessary
portions of the search space. Third, by adding the tunneling
logic, mSA(T) avoids jumping out of local minima too quickly;
instead, it explores a few additional states closer to current
local minima. We also show that the proposed approach
can determine desired configuration very quickly, which is
essential in highly dynamic DevOps and microservices en-
vironments.

REFERENCES

[1] M. Shahin, “Architecting for devops and continuous
deployment,” in Proc. of ASWE, ACM,2015, pp.147–148.

[2] S. Newman, Building microservices – Designing Fine
Grained Systems,2nd Edition, ”O’Reilly Media”, 2021.

[3] J. Humble and D. Farley, Continuous delivery: reliable
software releases through build, test, and deployment
automation, Pearson Education, 2010.

[4] F. Connolly, “Production operations – the last mile of a
devops strategy,” LMC Report, Mar 2014.

[5] W. Cappelli, “Causal analysis makes availability and
performance data actionable,” Gartner Report, Oct 2015.

[6] C. Tang, T. Kooburat, P. Venkatachalam, A. Chander,
Z. Wen, A. Narayanan, P. Dowell, and R. Karl, “Holistic
Configuration Management at Facebook,” in Proc. of
SOSP, ACM, 2015, pp. 328–343.

[7] P. Soumplis, P. Kokkinos, A. Kretsis et.al., “Resource Al-
location Challenges in the Cloud and Edge Continuum,”
in Advances in Computing, Informatics, Networking and
Cybersecurity, Springer, 2022, pp. 443–464.

[8] S. Singh and et al, “Cloud resource provisioning: survey,
status and future research directions,”Knowledge and
Information Systems, vol. 49, no. 3, pp.1005–1069, 2016.

[9] S. S. Gill and Et al., “Chopper: an intelligent qos-
aware autonomic resource management approach for
cloud computing,” Cluster Computing, vol. 21, 2018.

[10] M. Wang and Et al., “Storage device performance pre-
diction with CART models,” in MASCOTS, 2004.

[11] N. Siegmund, A. Grebhahn, S. Apel, and C. Kastner,
“Performance-influence models for highly configurable
systems,” in Proc. of ESEC/FSE, 2015.

[12] M. Satyanarayanan, “The emergence of edge comput-
ing,” Computer, vol. 50, no. 1, pp. 30–39, 2017.

[13] Y. Sfakianakis, M. Marazakis, and A. Bilas, “Skynet:
Performance-driven Resource Management for Dynamic
Workloads,” in IEEE CLOUD, 2021.

[14] S. Sondur, K. Kant, S. Vucetic, and B. Byers, “Storage
on the edge: Evaluating cloud backed edge storage in
cyberphysical systems,” in IEEE Intl Conf. on MASS,
2019, pp. 362–370.

[15] K. Hussain, M. N. M. Salleh, S. Cheng, and Y. Shi,
“Metaheuristic research: a comprehensive survey,” Arti-
ficial Intelligence Review, 2019.

[16] A. V. Levy and A. Montalvo, “The tunneling algorithm
for the global minimization of functions,” SIAM J. Sci.
and Stat. Comput., vol. 6, no. 1, p. 15–29, 1985.

[17] F. Schoen, “Stochastic techniques for global optimiza-
tion: A survey of recent advances,” J. of Global Opti-
mization, vol. 1, no. 3, pp. 207–228, 1991.

[18] Z. Li and Y. Yang, “A modified tunnelling algorithm for
global minimization with box constrained,” in 5th Intl.
conf on Computational Sciences & Optimization, 2012,
pp. 423–427.

[19] O. Alipourfard, H. H. Liu, J. Chen et. al., “Cherrypick:
Adaptively unearthing the best cloud configurations for
big data analytics,”, Proc. of NSDI, 2017, pp. 469–482.

[20] S. Sondur and K. Kant, “Towards automated configura-
tion of cloud storage gateways: A data driven approach,”
in Intl. conf on Cloud Computing, Springer, 2019, pp.
192–207.

[21] M. Barrette and Et al., “Statistical multi-comparison
of evolutionary algorithms,” Bioinspired Optimizaiton
Methods and their Applications, 2008.

[22] K. P. Ferentinos, K. G. Arvanitis, and N. Sigrimis,
“Heuristic optimization methods for motion planning of
autonomous agricultural vehicles,” J. Global Optimiza-
tion, vol. 23, no. 2, pp. 155–170, 2002.

[23] Y. Xu, Q. Ye, and G. Meng, “Hybrid phase retrieval algo-
rithm based on modified very fast simulated annealing,”
Intl. J. of Microwave & Wireless Technologies, vol. 10,
no. 9, pp. 1072–1080, 2018.

[24] C.-Y. Lee, “Fast simulated annealing with a multivariate
cauchy distribution and the configuration’s initial tem-
perature,” J. Korean Physical Society, 2015.

[25] A. Iosup and Et al., “The grid workloads archive,” Future
Generation Computer Systems, vol. 24, 2008.

[26] V. Nair, Z. Yu, T. Menzies, N. Siegmund, and S. Apel,
“Finding faster configurations using flash,” IEEE Trans-
actions on Software Engineering, 2018.

[27] V. Nair, T. Menzies, N. Siegmund, and S. Apel, “Faster
discovery of faster system configurations with spectral
learning,” Automated Software Engineering, 2018.

[28] S. Samsi, , and Et al., “The MIT Supercloud Dataset,”
in IEEE HPEC, 2021.

[29] V. Nair, T. Menzies, N. Siegmund, and Apel, “Using bad
learners to find good configurations,” in Proc. of Joint
Meeting on Foundations of Software Eng., 2017.

10

[30] T. Xu and Et al., “Hey, you have given me too many
knobs!” in Proc. of Joint Meeting on Foundations of
Software Eng., 2015.

[31] M. S. Sorower, “A literature survey on algorithms for
multi-label learning,” OSU, Corvallis, vol. 18, 2010.

11

