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Abstract—Large-scale IoT systems are likely to involve mul-
tiple subsystems deployed and operated by different “parties”,
which must collaborate to ensure that their operational rules
do not conflict. We codify the smooth functioning of the entire
system through a set of “safety properties” that must be enforced
collaboratively. However, this requires cross-party access to
the sensors/actuators state and the ability to request remote
actuations. In this paper, we define an access control architecture
for such situations where we distinguish between the static
authorization problem that selects parties tasked with safety
property enforcement and the dynamic (run-time) control over
accesses. This results in a unique enforcer selection problem
for which we develop efficient algorithms and quantify their
performance through a comprehensive emulation of an extensive
smart home. We also show that the additional cost of granting
access rights to the parties is quite small in a medium-size
emulated multiparty IoT environment.

Index Terms—Access control, multi-party IoT system, safety
properties, combinatorial optimization

I. INTRODUCTION

IoT deployments continue to accelerate worldwide for
various applications, particularly the multifaceted smart city
applications. Most of such deployments invariably consist of
multiple subsystems, each controlling a different aspect of
the system. For example, a smart building would include
subsystems focused on smart lighting, HVAC control, surveil-
lance, fire management, etc. These subsystems are likely to
be designed/deployed by different vendors and managed by
various administrators, referred to as “parties”. Consequently,
their operational rules (ORs) are developed independently
and may primarily concern only the sensors/actuators of the
subsystem (though we do allow for cross-party ORs). Thus
these subsystems may conflict when operated in a shared
environment.

In [1], we have explored such inter-party conflict detection
and resolution. The approach is based on defining a set of
“Safety Properties” (SPs), again expressed in the same way
as ORs, except that these are now requirements for acceptable
collective behavior. The SPs necessarily involve some cross-
party aspect since we can assume that any intra-party con-
flicts have already been resolved. The conflict detection and
resolution are then reduced to checking for conflicts between
ORs and SPs and enforcement or suitable dynamic alteration
of ORs to avoid the conflicts. Although the inherent conflicts
between ORs and SPs can be detected statically, much of the

conflict detection and resolution depends on the context and
thus needs to be done at run-time.

Our work in [1] assumed that any accesses needed to
evaluate ORs and SPs (which would require the current state of
sensors and actuators) and any resolution actions (which would
require sending appropriate actuation command to a controller)
could be done freely since we did not consider any access
restrictions. This is undesirable even when assuming that the
parties are mutually trusting and non-malicious; as we do, a
successful attacker can get free access to the entire system.
This motivates us to consider the issue of accessibility driven
by the principle of least privilege. In this paper, we define an
architecture that separates authorization (i.e., selection of the
most suitable party to enforce each SP, which is done rather
statically) and the run-time access management. We develop
algorithms for each and evaluate them comprehensively by
emulating a large smart-home environment. To the best of our
knowledge, access control in the context of dynamic conflict
detection in multiparty IoT systems has not been considered
in the literature.

The rest of the paper is organized as follows. Section II
discusses the related work, describes our overall architecture
and highlights specific contributions. Section III provides the
necessary background and describes the two sides of the
problem: namely authorization (determining SP enforcers) and
run-time access control. The next two sections (IV and V)
then discuss the enforcer selection algorithms and section VI
focuses on the run-time access management. Section VII
evaluates the efficiency of our approach. Finally, section VIII
then concludes the discussion.

II. RELATED WORK AND OUR CONTRIBUTIONS

A. Related works and their limitations

Access control is a very well studied topic with many
well-known approaches, including Role-Based Access Control
(RBAC) [2] which controls access based on the role of
the individual, Attribute-Based Access Control (ABAC) [3]
which controls access based on the attributes of the users and
objects, and Capability-based Access Control (CAC) [4] which
provides an unforgeable ticket for access to the authorized
entities. However, traditional access control methods are inad-
equate in large-scale multi-party IoT systems due to both the
complexity of ABAC and RBAC models [5] and the dynamic
and context-specific nature of the access control problem. On
the other hand, CAC models have limitations like lack of
context awareness, access rights propagation, revocation, etcThis research was supported by NSF grant CNS-1527346.



Ouaddah et al. [6] analyze various access control models
for IoT systems. The article discusses the advantages and
disadvantages of different access control models and protocols
in an IoT environment. Pal, et.al. [7] present a policy-based
approach in the context of IoT for providing fine-grained
access for authorized users to services while protecting valu-
able resources from unauthorized access. An attribute-based
access control mechanism is presented in [8] that can enforce
access control based on the attributes of the devices, users,
and environment context. However, these mechanisms do not
consider dynamic context based access control needed in a
multiparty IoT system.

Recently, the Blockchain technology has been examined
extensively to manage cooperation among non-trusting parties.
In [9] the authors present FairAccess, a decentralized access
control framework for IoT based on blockchain. Other similar
studies on access control models using blockchain are reported
in [10]–[14]. However, these approaches achieve scalability by
distributing access permissions via a hub acting as a manager,
posing a security risk if the manager is malicious. Additionally,
blockchain mechanisms proposed in [9] do not support self-
enforced access control policies. The use of Blockchain is not
only expensive but also has several downsides. It requires
broad consensus, meaning disclosure of a lot of data, and
it does nothing about the publication of incorrect data (e.g.,
incorrect sensor values) unless that data can be verified by
independent means (e.g., by giving all parties isolated mech-
anisms to access each sensor’s value). But even then, if the
sensor is faulty or otherwise compromised, Blockchain cannot
address that.

B. Proposed Access Control Architecture

We split the access control problem into two parts: (a)
Authorization, which chooses, for each SP, which party is
best suited to do the enforcement, and (b) Real-time Access
Control, which must be applied during SP enforcement at run-
time. Note that the authorization (and hence enforcer selection)
is essentially static, although it can be redone if needed.
Accordingly, authorization relates to the more static aspects
of the access, including (a) Communications difficulty (e.g.,
intermediate hops, provisioning cost, etc.), (b) Sensor/actuator
state sharing risk as perceived by the target party, (c) Qual-
ity/reliability of the data generated, etc. We capture these
aspects via a “cost” factor and regard it as only a party-to-
party cost for simplicity. We specifically avoid defining this
cost in dynamic terms (e.g., number of bytes of data) since
the focus here is not performance but rather data exposure
across parties or the difficulty of communication. In particular,
if a party needs to enforce two different SPs that require a
state of the same remote sensor/actuator, the cost needs to be
considered only once from an authorization perspective, even
though these SPs will be enforced as and when necessary at
run-time.

Since a SP involves attributes (defined as sensor/actuator
values and actuation operations) from two or more parties,
there is no “natural” enforcer for a SP. Overall, we want to

distribute the enforcement responsibilities among parties to
minimize the “cost” (which includes risk, among other things)
of non-local attribute access and avoid too much concentration
in one party (which is both risky and may cause performance
bottleneck). In general, the SPs may range in importance from
critical to merely desirable so that the least the important ones
may even be ignored if they require too much work.

Following the selection of enforcers, we have the access
control problem, which determines when under what con-
ditions or how long the actual access is provided to the
authorized parties.

Fig. 1: Authorization and Access Control Model

We assume that all subsystems have physical interconnectiv-
ity through which any pair of them can communicate. We can
assume a standard web-services interface for each controller
through which they can discover each other and then commu-
nicate [15], [16]. To protect the system from external security
threats, we assume standard cryptographic mechanisms such as
each controller using PKI to authenticate other controllers and
Diffie-Hellman key exchange for establishing session keys. It
should be adequate for a controller to verify a standard group
key for all its devices [17], but we do not address that part
here. We need to provide appropriate authorization to enforce
the SPs for inter-controller interaction. We assume that the
ORs and SPs are themselves not considered sensitive and thus
can be pooled and operated upon at a single node, hereafter
called the root node. This could be either one of the controllers
or yet another trusted node.

Fig. 1 shows the overall structure of our work. In phase1
(authorization), the root node executes the suitable algorithm
from section V by using as inputs the details of each subsystem
(party) and the SPs to determine the enforcing party for each
SP. Next, in phase2 (access control), discussed in section VI,
the root node prepares suitable attribute lists along with “ca-
pabilities” (or cryptographically signed access specifications)
and distributes them to both SP enforcers and attribute owners.
Phase3 then uses these for actual access control.

C. Our contributions

As discussed in section II-B, the authorization cost has a
unique property in that the cost of an attribute is counted only
once even if multiple SPs enforced by a party need it. This
property sets our problem apart from the very well-studied
assignment problems in operations research. To the best of
our knowledge, such a problem has not been considered in
the past in the literature. Since the problem is easily shown
to be NP-hard, we devise two different algorithms, one based
on a step-by-step assignment of safety properties to parties
and the other based on recursive partitioning. We also address
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the problem of distributing the access rights, verifying them,
and ensuring that authorized enforcers get limited ability to
request actuations.

As stated above, we evaluated our solutions comprehen-
sively using the Home-IO simulator [18], whose extensive
physics modeling capabilities of the environment make it
much more extensive and flexible than simple experiments
that one could conduct with actual devices. The experimental
evaluation indicates that both approaches rapidly converge
to the optimal solution, but partitioning is better. We also
conducted experiments to request/grant the needed access
rights and have shown that the cost is rather modest.

In this paper, we have assumed that the parties in our
application are cooperative and non-malicious. We believe that
is a proper assumption in a setting where the subsystems are
deployed and operated by reputable companies/organizations
along with severe legal and market-related costs of delib-
erate misbehavior. Dealing with cooperation in an arbitrary
malicious environment is generally infeasible or expensive.
For example, the Byzantine agreement [19] concerns only
broadcast consistency, assumes only a limited number of
dishonest parties, and still is very expensive.

III. ACCESS CONTROL IN IOT SYSTEMS

A. Multiparty Operation and Conflicts

Fig. 2: Illustration of a multi-party IoT
system

As mentioned
above, a large-scale
IoT system may have
multiple subsystems,
each with one or
more controllers.
These controllers
can become
interdependent
for several reasons,
as discussed in [20]
and thus may conflict. Fig. 2 illustrates some of the access
control issues and conflicts with a simple example of two IoT
subsystems deployed and operated by two different parties.
Controller 1 owns sensor 1,2,3 and actuator 1, Controller 2
owns sensor 4,5,6 and actuator 2. These relationships are
shown using solid lines. As shown by dotted lines, some of
the operational rules also need nonlocal sensor values. The
two subsystems operate in two adjacent and overlapping areas
called areas1 and 2. When a single-step greedy algorithm
is used to solve this simple example, the assignment cost
slightly differs compared to greedy used in combination with
some additional heuristics.

For example, suppose that in Fig. 2, the two systems
are fire management (controller 1) and HVAC (controller
2), Sensor3 is the smoke detector for the entire space, and
Actuator2 opens/closes a window. Suppose that controller1
determines smoke and opens the window in area2, letting
cold air inside. This would cause HVAC to be triggered and
may act oppositely (i.e., run the heater). Note that in this
case, the HVAC cannot enhance its actuation condition to

suppress heating since it does not know why the temperature
dropped. Instead, if Controller 1 shares the sensor readings
with Controller 2, such an exception is not only possible but
can be incorporated as a more direct rule independent of the
temperature. Such actions do require a deep analysis of various
possibilities and their consequences. For example, it would be
inappropriate to use a rule that stops the window from opening
due to smoke if the heater is running.

IoT deployments continue to evolve over time due to phys-
ical, operational, and environmental changes. For example,
devices may fail, be taken out temporarily for maintenance,
new devices added, operational policies changed either perma-
nently or temporarily due to some event (e.g., fire), etc. This
requires the ability to rerun authorization algorithms whenever
needed, grant new authorizations, and revoke unneeded ones.

B. Operational Policies and Rules

An operational policy Pi for controller i essentially moves
the subsystem from one state to another. The policy can be
expressed as the following triple:

Pi=[C
(pre)
i ,Ai,C

(post)
i ] (1)

Where C
(pre)
i and C

(post)
i are the precondition and post-

condition assertions about the state before and after taking
the stated action Ai, the index i here emphasizes that this
policy deals only with what is visible to controller i. The
pre/post conditions are Boolean expressions over various state
variables, including the status of an actuator and the sensor’s
values.

An operational policy can also be considered as an opera-
tional rule (OR), denoted R(o)

i , expressed in first order logic
by simply viewing it as follows:

R(o)
i =[C

(pre)
i &Ai =⇒ C

(post)
i ] (2)

As a concrete example, consider a policy that turns on cooling
when the room temperature goes above 25C. This can be
expressed as [(temp>25C & cooling=off & turnon cooler)
=⇒ cooling=on]. As another example, rule R4 in Table II can
be expressed at [Motion & luminance<B0 & turnon lights
=⇒∀ilighti=on].

C. Safety Properties

A Safety Property (SP) requires an action to be taken so
that “something bad” (which we generically call as conflict)
should not happen due to independent operation of different
subsystems. For example, the SP “if smoke detected then
open windows” intended to avoid an undesirable behavior and
may be needed since the climate control subsystem controls
the window. In contrast, smoke detection is a function of
the fire management subsystem. The SPs, like the ORs, may
involve time and even frequency (e.g., turning a device on
and off in quick succession may be undesirable). One issue
with specifying SPs explicitly is that the “bad” things need to
be anticipated in advance. In a complex system, this may be
difficult, and new problems may emerge over time either via
actual occurrence or through some prediction mechanism (e.g.,
machine learning). However, this is not a problem since the
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TABLE I: Table of notations

Notations Meaning
Stot Set of SPs (N denotes #SPs)
Ptot Set of Parties (K denotes #parties)
Cenf(s) Cost of non-enforcement for each SP s∈Stot

Cnenf(s) Cost of enforcement for each SP s∈Stot

Cauth(p,p
′) Inter-party authorization cost between parties p and p′

conflict detection/resolution in [1] and the access control are
dynamic, and the authorizations can be reassigned occasionally
as needed.

IV. DECIDING SAFETY PROPERTY ENFORCERS

A. Rule Enforcer Problem

We have a universal set of attributes denoted Atot, i.e.,
the set of state variables (or attributes) corresponding to all
the sensors and actuators in the entire system. We also have
a set of parties denoted as Ptot. Each attribute a∈Atot has
an associated owner party Pattr(a)∈ [1..K]. Similarly, let
us define the opposite function Aparty(p) that provides the
attributes owned by party p. We also have a set of safety
properties, denoted Stot. Each of these SPs involves some
subset of the attributes which we denote as Asp(s). Obviously,
∪s∈SAsp(s)⊆Atot. We denote by Penf(s)∈Ptot the “enforcer
party” that we want to select for each SP s.

For party p∈Ptot, R(a,p)∈ [0,1] denotes the access rights to
attribute a (0 means no access, 1 means access). The baseline
accessibility is given, i.e., ∀a,p, R0(a,p) has the following
accesses enabled: (a) By default, each party has access to its
attributes, i.e., R0(a,O(a))=1, and (b) R0(a,p)=1 for p 6=
O(a) if an operational rule of party p requires such an access.
For all others R0(a,p)=0.

For each authorization granted to attribute a to party p,
there is a positive cost denoted as Cauth(a,p). We assume that
all SPs that already hold in the baseline scenario and do not
require any additional access rights are excluded. Thus, each
SP s∈Stot SPs does involve some cost for non-enforcement,
denoted as Cnenf(s) and enforcement, denoted, Cenf(s). The
key notations are summarized in Table I.

The problem now is to determine the weighted partial cover
S0⊂Stot with a given threshold for the total cost of the
uncovered SPs. That is, we want

∑
s∈Stot−S0

Cne(s)≤w0

while minimizing the total authorization cost of the attributes
in S0, i.e., the SPs that are enforced. For any s∈S0, we
need new access rights for the enforcer party Penf(s) over
attributes for which the access does not already exist, i.e.,
for all a∈Asp(s) such that R0(a,Penf(s))=0. That is, if
we define η(s) as the total cost of all attributes in SP
s that the enforcer does not initially have rights to, i.e.,
η(s)=

∑
a∈Asp(s),R0(a,Penf (s))=0Cauth(a,Penf(s)), we want to

minimize
∑

s∈S0
η(s).

B. Formulating Minimum Cost Enforcement Problem

The goal of minimum cost enforcement problem is to
partition the set of SPs Stot among the Ptot parties such
that the overall cost of nonlocal accesses is minimized. Let
xs,p denote the assignment function for SP s to party p, i.e.,
xs,p=1 party p is the enforcer of SP s, i.e, p=Penf(s). Let

Fig. 3: An Illustrative Example

X denote the enforcement assignment matrix x(s,p)s. Thus
our assignment problem can be stated as:

Minimize Ctot(X)
Subject to

∑N
p=1X(s,p)=1, ∀ s=1,..,N

xs,p∈(0,1)∀s=1,..,N,∀p=1,..,K (3)
The constraint above states that each SP will be assigned

only to a party. Now if SP s is assigned to party p, the attribute
set X(s,p) will be local and thus have zero (or small) cost,
whereas everything else will have a nonzero cost. Furthermore,
if another SP s′ is also assigned to party p, the cost of
common non-local attributes accessed by s and s′ should be
counted only once. That is, if X(s,p)=X(s′,p)=1 the costs
of attributes Asp(s)∪Asp(s

′) should be counted only once.
Now the set Acom(p,p′)=∪Ns=1X(s,p)[Aparty(p

′)∩
Asp(s)] represents all the attributes that are common parties
p and p′, i.e., in party p′ but also accessed by SP’s assigned
to party p. The total cost then is the sum of costs of the
elements of Acom(p,p′) times the inter party authorization
cost denoted by Cauth(p,p

′) as shown in the equation below.

Ctot(p,p
′)=

∑
∀a∈Acom(p,p′)

c(a)∗Cauth(p,p
′) (4)

Then the objective function corresponding
to a given assignment matrix X is given by
Ctot(X)=

∑K
p=1

∑K
p′=1,p′ 6=pCtot(p,p

′). This function is
being minimized above. The resulting optimal X(s,p) is
precisely the enforcer list, i.e., X(s,p)=1 iff p=Penf(s).

C. Complexity of the Enforcement Algorithm

The classical assignment problems are NP-hard, and so
is ours. However, as explained in section II-C, ours is not
a classical assignment problem because of the unique cost
structure that we need to assume to deal with accessibility.
This requires developing new efficient heuristic algorithms that
we develop in the next section.

Because of this unique cost structure, a simple greedy
approach may not provide good results. A simple example
illustrates this in Fig. 3, which is later used as a running
example to illustrate our algorithms in the next section as well.
In this example, with three parties <P1,P2,P3> and three SPs
<SP1,SP2,SP3>. The figure depicts the attributes owned by
parties P1, P2, and P3, and the attributes SPs SP1, SP2, AND
SP3 require access. When a single-step greedy algorithm is
used to solve this simple example, the assignment cost slightly
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differs compared to greedy used in combination with some
additional heuristics. The detailed steps in the calculation of
cost are shown in section VII-C.

V. ALGORITHMS FOR ENFORCEMENT PROBLEM

A. Greedy+Movement+Deletion (GMD) Approach

Since the cost of the assignment is unknown in our problem
until all the SPs have been assigned to the parties, we consider
a greedy assignment followed by a few rounds of movement
and/or deletion.

The initial greedy assignment assigns each SP to the party in
the order of the maximum local attributes covered by the party.
If multiple parties have the same number of local attributes for
SP, the party ID is used to break the tie. Following this greedy
assignment of SPs to parties, the next step is to identify a SP
that can be reassigned to a different party to reduce the overall
cost, which is calculated using equation (4). We perform a
lookup of all SPs associated with each party that requires
access to non-local attributes. We consider all K−1 parties for
reassignment for each such SP, excluding its original enforcer,
to reduce the overall cost. Given that the parties incur an inter-
party access cost reassigning an SP to another party should
account for this cost and prefer the party with the lowest cost
compared to the original enforcer party. Given that it is not
always possible to satisfy SPs while loosening access controls,
or vice versa, a balance between SPs and access restrictions
may be required. As noted earlier, certain non-critical/optional
SPs may have higher cost of enforcement than risk of ignoring
them; these are removed in the last step of our algorithm.

With this, we develop a heuristic algorithm named Greedy
Movement Deletion (GMD) as shown in Algorithm 1, which
is motivated by our earlier work on access control in collabo-
rative multiparty databases in [21]. The first function employs
greedy heuristics that map each s to a party p with maximum
local attributes and outputs the enforcers(parties) for each s
and the total cost of the assignment. The primary approach
is to start with the local attributes contained in all parties
and attributes in all SPs. This step is done by checking the
overlapping of attributes in each SP with the local attribute
set of each party. Then for each SP, we determine the number
of times it appears in a local attribute set of every party and
assigns it to the party with the highest count (line 6). This
process is repeated for all the SPs, and the cost of the entire
assignment is calculated using Equation. 4 (Line 7 to 8).

The second function takes the set of enforcers obtained
via greedy assignment and counts the number of non-local
attributes each s should access before evaluating reassignment.
The count of non-local attributes is calculated for each s, and
its enforcer party p, and s for movement is determined for
those that need access to at least one non-local attribute (Line
15,16). Once the SPs to be moved are decided, we consider all
the K−1 possible parties (excluding the original enforcer) for
reassignment and obtain the new set of enforcers by invoking
the greedy assignment function for each SP in the new list X
(line 19). The function returns a new group of enforcers (E′)
and the improved cost (COST ′).

Algorithm 1 GMD: Greedy Movement Deletion Algorithm

1: void GMD Algorithm() //
2: Stot is set of SPs, Ptot is set of Parties
3: procedure Greedy Assignment(Stot,Ptot):
4: E= [] // Set of enforcers
5: COST = 0 // Cost of the entire assignment
6: pmax,s ← getMaxAttributes(Stot,Ptot) /* assigns each SP s to a

party with maximum local attributes (pmax) */
7: E ← Map(pmax,s)
8: Calculate the COST of the assignment Equation. 4
9: return E,COST

10: procedure Movement(E,COST ):
11: E′= [] // New Set of enforcers
12: COST ′ = 0 // Cost of the new assignment
13: M= [] // Set of SPs to be reassigned/moved
14: for each entry [p,s] in E do
15: s′ ← getNonLocalAttributes(p,s) /* determine SP s that require at

least one non-local attribute access from its enforcer party p */
16: M = M ∪{s′};
17: if q is enforcer(s′) then
18: K′ = Ptot \ q
19: E′,COST ′ = Greedy Assignment(X ,K′)
20: return E′,COST ′

21: procedure Deletion():
22: delete(s where Cenf(s)>Cnenf(s)); // sp is not a critical
23: Calculate the COST using the Equation. 4
24: return COST

The third function considers removing any safety properties
to reduce the total cost further. Each safety property s has a
cost associated with enforcing and not enforcing it, which is
determined by the significance of the s. After finalizing the set
of enforcers by the Movement function; if the cost of enforcing
a s is greater than the cost of not enforcing it (line 21), the
corresponding s is deleted, and the cost is recalculated without
this s resulting in the total cost (line 22).

The key quantity in the running time of the algorithm is
K, the number of parties, NAtt, the total number of attributes
across the entire subsystem, Stot is set of SPs. Therefore, the
overall worst-case complexity of the greedy algorithm we have
developed is O(K ∗N ∗NAtt).

B. Partitioning Approach

In this section, we present a recursive partitioning approach
for the problem of assigning all the SPs to the parties. For
a large-scale IoT system composed of numerous subsystems,
each with its own controller/party operating cooperatively,
we propose a modified scheme of the Kernighan-Lin algo-
rithm [22]. The proposed algorithm bisects the IoT system of
multiple parties based on the authorization cost between them.
The IoT system can be modeled as an undirected weighted
graph GI =(V,E), with vertices vk, k=1..K representing
parties and edges representing the authorization cost between
pairs of controllers/parties. The adjacency matrix W for the
graph GI contains the cost of the edges, for each wij ∈W ,
wij represents the authorization cost between a party vi and
a party vj .

The original Kernighan-Lin (KL) algorithm is an iterative
algorithm that starts with an initial bi-partition of a graph GI =
(V,E) with |V | = K, partitions V into Y and Z such that VY =
VZ , VY ∩VZ=∅ and VY ∪VZ=V . If no good initial partition
is known, the algorithm is repeated with a variety of randomly
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chosen initial partitions, and the one with the smallest edge-cut
is chosen. The algorithm searches for a subset of vertices in
every iteration such that swapping them results in the partition
with the smallest edge-cut. If such a subset is found, it is
used as the partition for the following iteration. The algorithm
repeats the procedure and terminates if it cannot discover two
subsets. The KL algorithm finds locally optimal partitions with
a good initial partition. Since we are partitioning a smaller
graph with fewer parties, the algorithm requires fewer runs to
find a good partition in a shorter amount of time.

Based on the KL algorithm, we propose a recursive parti-
tioning algorithm as presented in Algorithm 2. The algorithm
has two phases: the partitioning phase and the assigning
phase. In the partitioning phase the undirected weighted graph
GI =(V,E), the set P0=V is partitioned into two partitions
Py and Pz with minimum average edge-cut, so that two parties
in Py and Pz respectively has least inter-party authorization
cost (Cauth(p,p

′)) (Line 4). Each vertex in the resulting
partition has an associated external and internal cost which is
defined as follows: For each y∈Y , the external cost is given
by, Ey=

∑
∀v∈Z cyv which is the sum of the costs associated

with all edges connecting each vertex in Z. Similarly, the
internal cost is defined as, Iy=

∑
∀v∈Y cyv which is the sum

of the costs associated with all edges connecting each vertex
in the same partition Y . Each vertex in the partition has the D-
value, defined as the cost reductions associated with moving
a vertex which is calculated using,

Dy=Ey−Iy for any vertex y in Y (5)

The primary parameter that determines whether two vertices
y∈Y and z∈Z is swapped or not is given by Gain, gyz:

gyz=Dy+Dz−2∗cyz (6)
where gyz is the sum of the D-values of vertex Y and Z and
difference from the value multiplied by twice the cost of the
edge connecting vertex Y to vertex Z.

At Line 8, the function pick max() calculates the D-values
and chooses two vertices y and z that maximize the Gain,
gyz from the partitions Py and Pz , respectively. The vertices
with the highest gain are swapped between partitions and
marked as locked, indicating that they are not subject to further
exchanging (Line 9 and 10).

If any pair of vertices y∈Y and z∈Z is swapped, the
algorithm updates the D-values (Line 10), denoted by the
symbol D′ and calculated using

D
′

i=Dy+2ciy−2ciz, ∀i∈Y −{y}
D

′

j=Dz+2cjz−2cjy, ∀j∈Z−{z}
(7)

The swapping process is repeated until the sum of the
gain values between each pair of vertices equals zero. After
optimizing the partition, in the assigning phase by calling
function at Line 16, we divide the N SPs into resulting the
partitions by calculating the number of overlapping attributes
between SPs and the parties in the partitions, and the cost of
this assignment is calculated using Equation. 4. The process is
then repeated recursively until we reach a partition size of one

(Line 14). Then, we delete the non-critical SP and calculate
the resulting cost. (Line 15).

Algorithm 2 Partitioning Algorithm

1: The initial partition is
∏

initial={P0}, store
∏

initial, P0=V , P =P0

2: procedure compute partition(P )
3: while |P |> 1 do
4: Initially partition P into Py and Pz arbitrarily
5: repeat
6: /* Now improve the partitions */
7: compute D-values, ∀y∈Py and ∀z∈Pz using (Eqn.5)
8: (y,z)=pick max(Py ,Pz ,W ) /* Pick pair of unlocked vertices

y∈Py and z∈Pz , such that Gain, gyz in Eqn.(6) is maximized
*/

9: swap vertices(y,) between Py to Pz

10: Lock vertices y and z, store gyz , Update new D-values, ∀y∈Py

and ∀z∈Pz (Eqn.7)
11: until sum(Gain = 0);
12: Store the partition P −→{Py ,Pz}
13: assign(P )
14: Compute partition(Py) and partition(Pz),
15: delete(s where Cenf(s)>Cnenf(s)); // sp is not a critical
16: procedure assign(P )
17: for each partition p in P do
18: Assign SPs based on count of overlapping attributes and calculate

cost of assignment using (Eqn.4)

VI. DESIGNING ACCESS CONTROL INFRASTRUCTURE

The algorithms in the previous section would partition the
SPs into sets, say Si, i=1..K, where Si denotes the set of SPs
enforced by party i. (Note that some of these sets could be
null.) Following this, each enforcer and the regular party must
be provided the appropriate access lists (phase2). Next, these
lists should be used to request and enforce access control at
run-time. We discuss these in the following.

A. Constructing Enforcement Repositories

Let Si={Sij ,j=1,2,..} denote the individual SPs that
party i will enforce. Let RAij and WAij denote the set
of nonlocal read and write (actuation) attributes in SP Sij .
Then for enforcement, party i needs to obtain values of RAij

from their owner parties, evaluate Sij , and if necessary send
a request to the owner parties in WAij . This brings in three
key questions: (a) when and how often does party i evaluate
Sij , (b) when and how party i gets access to RAij and Wij ,
and (c) how is the access claim verified by the target party?
We address these questions in the following.

Since the “state” represented by RAij can change anytime,
and it is nonlocal to party i, a straight pull or push is required
to read them. We will assume a web-services-based publish-
subscribe interface for reads. Thus an attribute owner publishes
a new value whenever it changes, and the subscribers can de-
cide how to act on it. In our case, the subscription is not open;
instead, only the enforcers should be allowed to subscribe to
the attributes they need. The notion of capabilities [4] provides
a convenient mechanism for this.

The root distributes the capabilities to both the publisher and
subscriber nodes to do the appropriate checking as part of the
subscription protocol. The changed values can be delivered to
a subscriber either via a push mechanism (usually based on a
change threshold) or pulled in periodically by the subscriber.
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The pull mechanism is more straightforward but may incur
high communication costs (frequent pulls) or miss out on
events that substantially change the pulled value (infrequent
pulls). Besides, it implies permanent access granted to the
subscriber. The push mechanism amounts to a remote interrupt
delivery to each subscriber and may have scalability issues.
However, it can control (a) the change threshold for the pushes
and hence the overhead vs. accuracy tradeoff, and (b) the
accessibility itself – effectively, the subscriber has no access
until a new value is pushed.

Fig. 4: Enforcing Run-time Access Control

As for WAij , when an enforcer determines that actuation
is required, it needs to send an explicit request to the owners,
who perform the requested actuation. We again propose to
use capabilities for this so that every actuation request can be
checked. The root node again does the capability distribution.
A key advantage of the capability mechanism is that the access
rights can be revoked if enforcers are changed or are found to
be faulty/compromised. The access information is maintained
in a repository at each node as illustrated in Fig. 4 where
we arbitrarily chose 3 SPs (S2, S4, S6) and four parties as
indicated. S2/S6 are enforced by party Pi, and S4 by Pk.
Parties Pm and Pj host some of the sensors/actuators needed
for the enforcement.

B. Enforcing Run-time Access Control
As stated earlier, the root node prepares the necessary access

lists (along with capabilities) and distributes them to all the
parties for use in access control, arranging to publish the
required state data, handle subscriptions, and start the run-time
operation. As an illustration, for party Pi to enforce S2, it must
be subscriber to Pm and Pk for “main door, “patio door” and
“windows” respectively. Also, Pm and Pk must honor request
from Pi to open the “main door”, “patio door” and “window”.

One issue in the design so far is that a legitimate enforcer
will be able to make the actuation request any time, which
is risky if the enforcer gets compromised. Ideally, we want
to allow the actuation only under the precise scenario of the
enforced SP, but this is nontrivial. For example, if Pi gets only
conditional access, both Pk or Pm must have an independent
way of verifying that “fire alarm=on for >1 minute”, but
this is not possible in a model where each party “owns” its
devices. Furthermore, multiple independent access paths are
very expensive, hard to manage, and actually, increase the
attack surface of the system.

TABLE II: Operational rules for different controllers

ID Rule Description
Operational rules for Light controller

R4 The lights for any area A must be turned on when a motion is detected and
luminance value is less than a threshold (B1)

R5 The lights for any area A must be turned off after 2 minutes, when there is
no motion is detected, and luminance value is greater than or equal to the
threshold (B1)

R9 If the motion detected for any area A is more than 3 times then, user is
present in the area

R11 When the user is present in area A for more than 5 minutes then user present
mode is activated

Operational rules of Fire controller
R13 After two minutes the fire is detected, fire-alarm is turned on
R16 The doors(main door, patio) and windows must be open and unlocked until

the smoke level is less than threshold t
R18 If the room temperature is greater than or equal to 155F then sprinkler head

is activated and water pump is open
R23 Once the sprinkler is on, turn off the sprinkler after 4 to 6 minutes

Operational rules for Climate controller
R25 When the room temperature ≥ 75F then turn on cooler
R26 When the room temperature ≤ 68F then turn on heater
R32 If the room temperature is in between 66F and 71F then turn off the cooler

after 3 to 5 minutes
R35 The flood sensor is deactivated after two minutes and evaporation starts with

a constant rate of V until the water level reached zero
Operational rules for Security controller

R37 The doors(main door, patio) must be closed and locked when the door sensor
is inactive

R39 The garage door must open when motion is detected and when
valid keypad code is entered

R45 The intruder alarm should go off after 3 minutes
Operational rules for Surveillance controller

R47 For any area A, Until the user present mode is activated the security cameras
(indoor camera,outdoor camera) should record video for ‘t’ time slots

R50 The security alarm is turned off after two minutes

Instead, we exploit other physical system constraints to
limit remote actuation. At least two types of constraints can
be easily recognized in this regard. The first relates to the
time/frequency of state change requests from other parties,
such as not allowing repeated on/off or open/close requests.
The second one concerns the operational constraints of the
(local) subsystem, such as a request to open one window and
close one nearby in the context of climate control. These can
be regarded as Local Safety Properties (LSPs), i.e., safety
properties that only involve attributes of one subsystem. Recall
that we had earlier assumed that such local constraints are
always satisfied. While this is reasonable for the correct
remote actuation requests, actuation requests from a faulty
or compromised remote controller could violate the LSPs.
An efficient “what-if” analysis of LSPs before granting the
actuation request can avoid this problem. Algorithms for this
can be designed along the lines of our work in [1].

VII. EXPERIMENTAL EVALUATION

A. Smart-home emulation

To experiment with a wide variety of processes and events in
a smart home, we use a comprehensive smart home emulator
called Home-IO, built by CReSTIC laboratory [18]. The
simulator is a virtual house’s real-time simulation software
that can modify the environment and automation level.

Home-IO simulates real-time heat transfer via radiation,
convection, and conduction. Inter-air mass exchanges are
simulated. Due to temperature differences and airflow, the
temperature changes when doors and windows are opened and
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TABLE IV: Safety Properties

ID Rule Description
S1 When the sprinkler is on for three minutes, then the water valve is off
S2 When the fire alarm is on for more than 1 minute, main door, patio doors

and window are opened for 8 to 10 minutes
S3 The windows must not be unlocked and open when the heater or cooler

is on
S4 When the heater or cooler is on, the main door and patio door should not

be open for more than 5 minutes
S5 If the garage door is opened for more than 2 hours then close the

garage door
S6 During night if the fire alarm is on then turn on the lights for 3 to 4

minutes
S7 The AC and the heater must not be on at the same time
S8 All the doors and windows must be closed within 2 minutes when

user present mode must is activated

closed as in a real house. The wind helps heat transfer between
the house and the outside air. Upwind house walls react more
to heat transfer. Cloud cover reduces solar radiation. The
humidity changes the dew point, affecting how the outside air
affects the house temperature. The home has multiple rooms
with smoke and CO detectors, smart lights, window blinds,
and doors. So the house is a data source and a testing ground.

Because of all these features, we believe that the use of
Home-IO is far more powerful than a real smart home con-
troller (e.g., Samsung SmartThings [23]), where the readings
of various sensors/actuators would be either extremely limited
or artificial (e.g., pretending that there is a fire). Our control
and analysis logic was implemented in Python (32 bit) using
visual studio (version 1.46) installed on an Intel(R) Core(TM)
i7-7700 CPU@3.6 GHz, 32 GB RAM and 1 TB SSD.

Fig. 5 shows our simulated scenario using Home-IO. To
increase the complexity of the model, we consider eight
different rooms, including a kitchen, pantry, garage, and the
home’s exterior. This yields 130 IoT devices, which helps
us emulate rather complex scenarios. Operational rules for
automation of these devices are implemented as appropriate
Python routines. Table. 6 shows the number and type of
devices in the Home-IO model.

B. Emulated IoT system in Home-IO

TABLE III: Home areas & controllers (one
party per area)

Subsystem total #areas #cntrls
type #cntrls (parties) per party
Lighting 10 2 5
Fire&safety 6 2 3
Security 10 2 5
Surveillance 12 3 4
Climate 14 (2,1) (5,4)

The emulated IoT
system comprises of
five types of con-
trollers as shown in
Table III, along with
their further division
into subsystems, each
of which is deployed
in an area of the home and controlled by a different party.
(The precise description of home areas is omitted due to lack
of space). Overall, we have 12 various parties. Fig. 6 shows
the devices owned by each type of controller. We designed
interaction between the smart devices as “routines” that may
be either user-invoked or event/time-triggered. The simulated
model can catch and respond to any concurrency conflicts and
safety property violations in real-time.

For experiment purposes, we created 50 ORs and 7 SPs, and
these rules are verified against five types of safety properties

defined in our previous work [1]. We have shown some
examples of ORs and all the SPs in the Tables II-IV. We
only list the textual version of the rules for readability and
space reasons rather than the actual LTL version used for the
implementation. As an illustration, rule R35 can be translated
to LTL using the until (U) operator as follows:

G[X2(flood sensor = activated ∧ deactivate flood sensor =⇒
flood sensor = deactivated ∧ evaporation(v) U (water level = 0)]

C. Results and Discussion

The first task in calibrating the model is to generate ORs and
SPs. We do this by a systematic substitution of devices from
a baseline configuration. For example, the Home-IO model
includes five sprinklers and five water valves, using which we
generate 25 unique combinations of SPs for SP1. Overall, our
model has 130 devices (sensors/actuators) and a total of 1323
SPs to be assigned to 12 parties. Similarly, we generate a total
of 1674 ORs.

TABLE V: Sequence of Steps in GMD algorithm

Step 1- Initial Greedy Assignment
Assignment Cost of the Assignment
SP1 ->P3 55 * 1
SP2 ->P1 40 * 2
SP3 ->P1 10 * 2
Total cost 155
Step 2 - Movement/Reassignment
Movement Total Cost
SP2 moved to P2 (55 * 1) + (40* 3) + (10 *2) = 195
SP2 moved to P3 (55 * 1) + (40* 3 + 55*2) + (10 *2) = 305
SP3 moved to P2 (55 * 1) + (40* 2) + (40 *2 + 55*2) = 285
SP3 moved to P2 (55 * 1) + (40* 2) + (10 *2) = 155
SP1 moved to P1 (40 * 1 + 10 *3) + (40* 2) + (10 *2) = 175
SP1 moved to P2 (10 * 3) + (40* 2) + (10 *2) = 130
Step 3 - Deletion
Delete SP3? No 20<115? (deletion vs. nonenforcement cost)
Delete SP1? No 30<170? (deletion vs. nonenforcement cost)
Delete SP2? Yes 20<12? (deletion vs. nonenforcement cost)
After deletion, Total cost is 110

D. An Illustrative Example

In illustrating how our algorithms work, we consider a
toy example with three parties <P1,P2,P3> and three SPs
<SP1,SP2,SP3> as shown in Fig. 3. The figure depicts the
attributes owned by parties P1, P2, and P3, as well as the
attributes for which SPs SP1, SP2, AND SP3 require access.
The cost of enforcing and not enforcing each SP is also shown;
for SP1, the value is <28,170>, where the first value of 28
represents the cost of enforcing the SP and the second value
of 170 represents the cost of not enforcing the SP. The cost
of inter-party access is indicated by red dashed lines.

1) GMD Algorithm: : The key steps in applying the GMD
algorithm to our example are shown in Table V. We assign
SP1 to P1 and SP2 to P3 due to the most local attributes in
each case. SP3 can be assigned to P3 or P1 (equal number
of attributes), and we arbitrarily choose P1. The total cost
of the assignment is calculated using eqn* 4. In Step 2, we
reassign SPs to reduce the cost further by considering all SPs
for each party and selecting one that requires access to non-
local attributes from the assigned party. For example, SP3
requires access to non-local attributes <A31,A33> of party
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Fig. 5: Virtual floor plan created in Home-IO

Contro- Actuator Sensor
llers type & count type & count

CFire

Fire Alarm 3 Flood 5Sprinkler 5
Smoke Detector 5 Smoke 5Water -Pump 5

CHVAC

Heater 10

Temp 10Cooler 10
Windows 10

Roller-Shades 10

CSurv

Indoor-cameras 1

Motion 12Outdoor-cameras 1
Security Alarm 3
Intruder Alarm 3

CSecu

Main-door 1
Door 10Patio-door 1

Garage-door 1

CLight
Light-switches 19 Brightness 9User-mode 1

Fig. 6: Ownership and Count of Devices with Controllers.

P1. Hence SP3 is considered for movement. Similarly, both
SP2 and SP1 are considered for reassignment. For movement,
we consider all other K−1 possible locations for the SP to
minimize the total cost. As shown, while no move is cost-
effective for SP2 and SP3, moving SP1 to party P2 does reduce
the total cost. In the final step, we consider deleting a SP if the
cost of enforcing a SP is greater than the cost of not enforcing
it by a party (a non-critical SP). In the end, we only enforce
SP1 and SP2 at a total cost of 110.

2) Partitioning Algorithm: : Table. VI sketches the overall
steps. For initial partition, parties with lower authorization
costs assigned to the same group, which results in the partition
1 containing (P1, P3) and partition 2 containing P2. The
algorithm then determines the D-values of the vertices(parties)
in each partition, which is the difference between the external
and internal costs of each vertex as specified by Eq.7. Since
the gain in D value is the largest between parties P2 and P3,
they are swapped. In the next step, the SPs are assigned based
on the maximum number of local attributes covered by the
partition, and SP1 is assigned to partition2, SP2 and SP3 are
assigned to partition1. The final step is deletion, identical to
GMD, and SP2 is deleted, reducing the total cost. Even this
example shows that the partitioning approach is significantly
faster than GMD and has a lower optimal cost than the GMD
algorithm.

3) Results of finding enforcers: We first evaluate our algo-
rithms on a small problem containing eight original SPs and
five parties. The exact (Brute Force) solution is feasible in this
case and takes only 6-7 minutes and yields an optimal cost of
130.

Fig. 7 compares the GMD, Partitioning, and Brute Force
algorithms where the x-axis shows the time taken in millisec-
onds which is in log-scale; and the y-axis indicates the cost
of the solution. Along with GMD/Partitioning, we considered
the Greedy approach, which performs only the initial greedy
assignment plus the deletion of non-critical SPs. It is seen that
in both cases, the cost of the solution converges to the optimal
solution as in brute force, but the Partitioning takes less time

TABLE VI: Sequence of Steps in Partitioning algorithm

Step 1- Initial Partition
Partition1 Partition2
P1 and P3 P2
Step 2 - Calculate D-Value
Party Internal, External Cost and Y -Value
P1 Ip1=10, Ep1=40⇒Dp1=30
P2 Ip2=10, Ep2=55⇒Dp2=45
P3 Ip3=0, Ep2=90⇒Dp3=95
Step 3 - Swapping Between Partitions based on Gain
Gain between P1 and P2 gp1p2 = Dp1+Dp2−2∗Cp1p2=−5
Gain between P3 and P2 gp3p2 = Dp3+Dp2−2∗Cp1p2=30
Swap P3 and P2 Part#1 - {P1 & P2}, Part#2 - {P3}
Step 3 - Assigning SPs to the Partitions
Assignment Total Cost
SP1 assigned to Part#2 (50 * 1) = 50
SP2,3 assigned to Part#1 (50 * 1) = 50
After Assignment, Total cost is 100
Step 3 - Deletion
Delete SP3? No 20<115? (deletion vs. nonenforcement cost)
Delete SP1? No 30<170? (deletion vs. nonenforcement cost)
Delete SP2? Yes 20<12? (deletion vs. nonenforcement cost)
After deletion, Total cost is 80

than the GMD. Initially, the greedy approach has the highest
cost value but then converges to GMD. Notably, Partitioning
has a lower overall cost than GMD, which has a higher initial
cost but still converges to the optimal solution.

To assess the scalability of our proposed algorithms, we
consider the full system described earlier, which has 1674
ORs, 12 parties/subsystems, and 1323 SPs. Since the exact
(Brute Force) algorithm has exponential complexity, it can
only go up to 16 SPs and five parties, or 221 combinations
(about one day of run-time), but others can all complete very
quickly. In addition to GMD/Partitioning, we also considered
the Greedy approach, which only does the initial greedy
assignment plus deletion of non-critical SPs. Fig. 8 shows the
comparison (note: y-axis is log scale). The Greedy approach
differs slightly in cost compared to both approaches but later
converges to optimal. This is because as the number of SPs
and parties increases, the marginal benefit of assigning a new
SP to any party decreases. This is because of the concept of the
fictitious locals, and the majority of SPs will be assigned to the
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Fig. 7: Enforcement Cost vs. Time (5 parties) Fig. 8: Enforcement Cost vs. Time (12 parties) Fig. 9: No of Access Requests vs No of SPs

same party. It is seen that partitioning takes significantly less
time than the other two approaches, but their eventual costs are
almost identical. The eventual costs of GMD and partitioning
are 125, while the optimal cost of the Greedy approach is 135.

4) Results of Run-time Access Control: We evaluate the per-
formance of phase2 and phase3 of our proposed architecture.
After assigning enforcers for the SPs, we built a repository
for each node as described in section VI. We then conducted
experiments to actually request and grant access rights as
needed by the enforcers.

TABLE VII: Run-time Ac-
cess control results

#Access Requests 105
Min Time (ms) 15.5
Max Time (ms) 35.1
Avg Time (ms) 21.5
Std Dev 2.40

In our experimental setup consist-
ing of 1323 SPs and 12 parties, there
are a total number of 105 access
requests made between the enforcer
parties and the parties owning the
attributes. The results are shown in
Table. VII, it can be seen that the average time taken per
SP is around 21.5 milliseconds. This does not account for
the network delay, which would vary by the type of network
and the message encryption used. However, we do show the
number of communications required in Fig. 9 as a function
of system size (in terms of the number of SPs). As expected,
the total no of communications increases almost linearly with
the size, with roughly five comm/SP enforcement. We believe
that the access control costs are pretty modest for use in real
multiparty IoT systems.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we consider the problem of access control in
large-scale IoT systems consisting of multiple subsystems (or
“parties”), which must collaborate to avoid or resolve opera-
tional conflicts. Even in a trusted environment, careful access
control is essential to lower the attack surface. We address
this problem in three phases. First, we explore approaches
to efficiently assign enforcing parties to each safety property
(SP) in the system based on an authorization cost metric. All
of these approaches quickly converge to the exact solution
for small problems (where the exact solution is feasible).
For larger problems, they all converge to the same value,
thereby strengthening the belief that they provide a good,
if not optimal, solution. In phase2, we build the access-
control infrastructure, which phase3 then uses for run-time
access control. In the future, the work can be extended along
many vectors, including placing restrictions on the sharing of
operational rules and safety properties, and tighter control over
the provided run-time accesses.
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