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Abstract—In this paper we examine the problem of conflict
detection and mitigation across multiple independently designed
IoT subsystems deployed in a shared environment. The desired
behavior of the system is codified in terms of predefined ‘“‘safety
properties”. We allow both the operational rules and safety
properties to include time and temporal logic operations and
detect their potential violation proactively via a ‘“look ahead”
mechanism. The problematic operational rules are then per-
turbed within the allowable range for mitigation. We show
that our mitigation approach, based on intelligent combinatorial
optimization, can resolve the conflicts via perturbation in 100%
of the cases where such a resolution is feasible.

Index Terms—Conflict detection, IoT system, safety properties,
combinatorial optimization, linear temporal logic

I. INTRODUCTION

With the recent wave of technological advancements, the
deployment of the “Internet of Things” (IoT) is becoming
ubiquitous, ranging from common home and personal appli-
ances to sophisticated safety-critical systems such as nuclear
plants and medical implants. Maintaining a safe and secure
operation of such IoT systems is of prime importance, as the
functionality of these systems relies on the entrusted automa-
tion. Of the many types of malfunctions that could occur in
IoT systems, an important class is of conflicting operation
of various actuators, usually caused by misconfiguration of
rules. The purpose of this paper is thus to explore mechanisms
for detecting and automatically mitigating conflicts that may
arise between subsystems that are designed/owned by different
parties. While the mechanisms that we develop are general, we
will ground them in the specific context of Intelligent Building
Management System (IBMS) — a prime area for the application
of IoT technologies.

A. Related works and their limitations

The topic of conflict detection and resolution in IoT devices
and systems has been considered extensively in the literature.
Vannucci et al. [1] proposes a verification framework with
satisfiability modulo theory (SMT) for a smart environment
with respect to event-condition-action (ECA). Sun, et al., [2]
specifies the relation among all building management rules and
classifies rule conflicts into five types. These correspond to
some detailed deficiencies that may appear in the rules (e.g.,
two rules specifying the same action under different condi-
tions or various types of loops in actuations). CityGuard [3]
proposed an approach to intercept action for smart service to
detect and resolve conflicts for smart cities. Ma, et al. [4]
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from the same group discusses various types of conflicts
in smart cities (including device, environment, human, and
topology) and their consequences. A study of conflicts in
35 home automation systems in Munir, et al. [5] shows that
many conflicts can occur, and the authors devise a runtime
conflict checking mechanism called Depsys. It attempts to
resolve conflicts after the fact based on simple application
priorities. But as discussed in the survey paper [6], most
techniques do not consider timing related properties which
are our main focus. Also, the conflicts are detected either via
a static modeling checking or, more often, dynamically at run
time. The conflict resolution is invariably done by defining
priorities among rules or devices so that a lower priority
rule/device is blocked in case of conflict.

B. Our objective

We consider a system of subsystems where each subsystem
has its own set of operational rules (ORs) designed not to
conflict with one another. However, conflicts can arise across
subsystems. The proper operation of the entire system is
defined by a set of “safety properties” (SPs) that essentially
take the same form as the operational rules. Both the ORs and
SPs may involve time or time duration and are expressed in
linear temporal logic (LTL). The inability to simultaneously
satisfy both SPs and ORs is considered a conflict. Since the
safety property is a necessary condition, one possible way to
avoid the conflict is by “weakening” the conflicting rule(s).
This weakening is possible in most (but not all) cases since
the rules in this environment will invariably involve some
thresholds (e.g., temperature>75F’) and time periods (e.g.,
[10 pm to 5 am] clock time), both or either of which may
have some flexibility. The idea is that if these thresholds
and/or times can be altered somewhat, conflicts can be avoided
rather than having to block one of the conflicting actions. It
is assumed that additional rules (or constraints) provide upper
and lower bounds on these quantities so that the alteration
attempt always keeps them within those bounds. Nevertheless,
the altered values may be presented as a suggestion to the
user/operator for approval first rather than applying them
automatically.

Since IoT systems operate in a dynamic environment with
changing conditions, the ability to alter the rule parameters
dynamically provides a powerful capability to “tune” them
suitably for the prevailing conditions (e.g., cold weather, hot
weather, night-time, time of special social events, etc.). Instead
of letting conflicts occur and resolving them by blocking one



of the actions, we can make suitable changes to the rules to
avoid the conflicts under those conditions. The changes could
be either temporary or perhaps made permanent by introducing
additional condition-specific rules. In either case, we need the
capability to monitor for different situations/conditions. The
permanent addition may appear to be a more attractive solution
for the future. However, it must be noted that each addition
of an exception condition makes the rules more complex and
more challenging to handle for the next conflict.

C. Our contributions

Since most events in an IoT system can occur almost
anytime, a static conflict resolution faces huge challenges.
First, we need to consider the worst-case situations, which
are likely to be the ones where most events happen concur-
rently, including even the rare ones (e.g., a fire). This may
indicate difficult-to-resolve conflicts that almost never occur
in reality. Second, even the worst-case scenarios may have
many possibilities, all of which must be analyzed. On the other
hand, dynamic conflict resolution occurs after the conflict has
already been detected. Thus the only possible resolution is to
either block some action to satisfy the safety property or, if
possible, ignore the safety property. For example, if the safety
property says that a switch should not be turned on within 1
minute of being turned off, we may occasionally let it happen.
Accordingly, the key contributions and novelty of this paper
are as follows:

1) A systematic method to consider inter-subsystem interac-
tion by defining a set of safety properties that must be
enforced, potentially weakens the operational rules.

2) Modeling IoT conflicts in a dynamic environment where
both the operational rules and safety properties involve
time and thus the avoidance/resolution could also be time
dependent.

3) An automated mechanism to minimally alter the conditions
enabling a conflicting action so as to remove the conflict.
To the best of our knowledge, this is the first attempt to
resolve IoT conflicts via an automatic modification of the
rules.

To limit the scope of the paper, we assume that all devices
and subsystems are functioning normally. In particular, the
conflicts resulting from IoT devices that are unreachable or
non-responsive, operating intermittently, providing incorrect
data, or intelligently misbehaving due to attacks/compromise
are not addressed here. We also do not explicitly address
device mobility, although the dynamic conflict avoidance de-
scribed above applies nicely to mobile environments where the
conditions may change dynamically.

D. Paper organization

The rest of the paper is organized as follows. In section II
we describe the key conflicts and other issues that arise in
large scale IoT systems. Section III then describes a model of
the IoT infrastructure in terms of operational rules and safety
properties. Section IV presents an approach for resolving the
conflicts via minimal cost alteration for the rules. Section V

presents a comprehensive evaluation of the proposed algo-
rithms. Finally, Section VI concludes the discussion.

II. DEPENDENCIES AND CONFLICTS IN IOT SYSTEMS

A large scale IoT system will have many sensors and actua-
tors and a plurality of controllers and control loops even for the
same physical area. For example, an IBMS may have separate
controllers for energy and security management functionality,
which have a peer-to-peer relationship. In other instances, a
lower-level controller may operate at a more refined time gran-
ularity and interact with a higher-level controller. For example,
the surveillance controller may continuously track people’s
movement and activities and interact with the building-access
controller, which operates at a coarser time granularity.

The operational policies followed by an IoT controller
are typically parameterized with the supported features, such
as desired temperature setpoint or range. These parameters
themselves may be changed manually by the operator or
autonomously. A policy can be thought of as the pair (trigger,
action) where the trigger is a condition or event based on
the sensed values and an action is an assertion of control by
allowing/blocking actuation of some actuators.

Multiple controllers become interdependent because of po-
tentially overlapping operational policies. This happens for
several reasons, as discussed in [7]. Still the main ones are
as follows: (a) different controllers depending on wanting
to control the same actuator, (b) action of other controllers
depending on the same sensors or parameters of the same
shared environment.

The dependencies between various operational policies can
cause conflicts with potentially serious consequences with
respect to operation and compromise by attackers [7]. How-
ever, they can also be beneficial in that they can be used
for detecting anomalies and malfunctioning devices (e.g., a
temperature sensor showing a very different reading than
others in a shared area). In either case, we could define a
set of safety policies), to ensure that the system does not end
up in undesirable states.

IoT deployments continue to evolve in terms of physical
aspects (for example, new devices added, old ones upgraded
or retired), and the operational environment (for example, new
or different vulnerabilities). Therefore a collective static and
dynamic analysis of the subsystems and their interactions is
essential to understand various forms of conflicts, their conse-
quences, and mitigation. Furthermore, this must be done in an
environment where time plays a vital role in the correctness
of operation, the incidence of conflicts, and their mitigations.

III. TOT COLLABORATION AND CONFLICT MODEL

A. Operational Policies and Rules

An operational policy ‘P; for controller ¢ essentially moves
the subsystem from one state to another. The policy can be
expressed as the following triple:

P, =[CP) A;,C P (1)



Where C*"*) and C***") are the precondition and postcondi-
tion assertions about the state before and after taking the stated
action A;. The index ¢ here emphasizes that this policy deals
only with what is visible to controller ¢. The pre/post con-
ditions are Boolean expressions over various state variables,
including the status of an actuator and the sensor’s values. In
many cases, the Boolean expression is a simple comparison of
the state variable, e.g., “door_camera=on & time_of_day<18”;
however, it can also involve complex analytics over the cap-
tured data as in “‘unknown_person_seen_by(door_camera)”.
The evaluation of such functions could challenge real-time
operation of the IoT system; however, this paper is not focused
on that aspect of the problem.

An operational policy can also be considered as an oper-
ational rule, denoted Rgo), expressed in first order logic by
simply viewing it as follows:

R =[O &eh; = CP7) 2)
As a concrete example, consider a policy that turns on cooling
when the room temperature goes above 25C. This can be
expressed as [(temp>25 & cooling=off & turnon_cooler) =
cooling=on]. As another example, rule R4 in Table I can
be expressed at [Motion & luminance< By & turnon_lights
= V,light, =on].

B. Safety Properties

A safety property expresses the idea that “something (bad)
should not happen” during the system execution. Two ex-
amples of safety property are: if smoke detected then open
windows, and if garage-door opened for more than ‘n’ hours
then close the garage-door. Safety properties provide a generic
way of stating what is considered to be “conflict”. Since
we assume that no conflicts occur within a subsystem (or,
instead, any such intra-subsystem conflicts have already been
dealt with), the safety properties necessarily go across multiple
subsystems.

In general, the rules of two different subsystems may have a
direct conflict in that they imply opposing actions for the same
actuator under a common underlying condition. For example,
if two rules ask for opening and closing the door, this is a direct
conflict. A direct conflict means that for some action A, we
have two rules C; = A and C; = A and both conditions
C1 and Cy can be simultaneously true. The two rules may be
untimed (i.e., “always” hold), or hold eventually, during some
slot, until some event happens, etc.

In addition to direct conflicts, Extended conflicts can be
specified through safety properties. For example, opening and
closing the window within a few minutes can be considered
a conflict and checked via a safety property. Similarly, two
actuators’ simultaneous operation that affects the same state
variable (e.g., heater and cooler) will not be recognized as a
conflict unless a safety property prohibits it.

Both types of conflicts generally involve enabling condi-
tions. If these conditions cannot be changed to avoid the
conflict, the only way to resolve the conflict is to block one
of the conflicting actions, as suggested in much of the prior

work on the subject [3]-[5], [8]. In case of safety property
(SP) conflicting with a rule, the rule’s action should be the
one that is blocked (else the concept of SP is meaningless);
otherwise, it is necessary to prespecify relative importance or
cost of blockage to make the decision.

The more interesting case that we address here is when the
enabling condition of a rule involves some thresholds which
can be altered to avoid the conflicts. For example, consider the
following rules where DO means door-open and DC means
door-closed:

HVAC: if [(Temp>80F A DC_time>5
(CO2_level>5% A DC_time>7 min)], open_door
Security: if (DO_time>3 min), close_door

min) VvV

and the safety property:
DO_time > 10 min

Here the conflict can be avoided by lengthening the open or
close durations. More generally, we try to resolve the conflicts
by “weakening” the operation rules.

C. Formal Modeling of Conflicts

The conflict between safety properties (SPs) and operational
rules (ORs) is traditionally cast as a Boolean satisfiability
problem of first-order logic. Still, with a significant extension:
since both SPs and ORs involve at least the comparisons and
arithmetic, we need to include the appropriate “theories” to
deal with them. This is the domain of satisfiability modulo
theories (SMT), which can solve huge problems scalability [9].
Several tools, such as the popular Z3 [10] already have built-
in these theories built-in. However, we need two additional
capabilities to deal with a predictive model of IoT operations
in a cyber-physical system such as the smart home. This
includes (a) theories associated with smart-home processes and
(b) an explicit involvement of time and temporal concepts. The
two are actually related since time is an essential component
for tracking these processes.

The nature of theories required for expressing and checking
the ORs and SPs depends on the degree of predictability
included therein. On one extreme, if the rules are purely driven
by actual events (e.g., temperature exceeding 80F). In this
case, the theories only need to specify proper semantics of
the operations and rule out impossible state transitions and
actions (e.g., window-close has an inverse effect of window-
open, the window cannot be locked/unlocked if it is open,
etc.). On the other extreme, if we want to have predictive rules
(e.g., rules accounting for the impact of the window open on
the temperature within 10 minutes), the entire heat-transfer
physics (or at least a simplified version of it) must be added
to the model. We would need some of the latter, as described
in the next subsection.

For modeling temporal properties, we use Linear Temporal
Logic (LTL), which allows the expression of concepts like
eventually, until, as long as, at some time, etc. LTL formulae
are built up from a set of atomic propositions (AP), with some
operators, the logical operators — (negation), A (conjunction),
V (disjunction) and temporal operators G(always), X(next),
U(until), F(eventually). Formally, an LTL formula ¢ can be



defined starting with a simple proposition p and recursively
applying the following operators:

¢u=p| ¢ | oNG | VP | X | U [ G (3)

An LTL formula is satisfiable by a model if there exists a
sequence of states in the model such that the formula is true
from a given initial state.

However, LTL does not deal with real-time, which is crucial
for expressing the operations in an evolving cyber-physical
system. We address this by making the time-slotted. One could
then speak of next or previous time-slots. For convenience,
we define time-slots of a few different durations to represent
events at different time scales. With this, SMT itself needs
to be extended, and we use the existing NuXMV model
checker [11]. The NuXMV model checker uses binary decision
diagram (BDDs) based model checking with SAT-based model
checking to address the state-space explosion. In the case of
unsatisfiability, it provides concrete counter-examples that are
useful in analyzing why and how the conflict happened.

We model the IoT system as a Finite State Machine (FSM),
such that detecting and resolving a conflict can be reduced
to a property-checking problem on the FSM, which can be
solved using any existing model checkers. The FSM can be
seen as a directed graph since nodes represent any subsystem’s
internal states and the arrows represent state transitions. Thus,
the model checking amounts to checking whether this graph
fulfills (is a model of) the property to be checked.

D. Static vs. Dynamic Verification

It would be ideal for checking for and removing all conflicts
across IoT subsystem interactions statically at system design
time. However, this is impossible in reality for three reasons:
(a) most subsystems are deployed incrementally rather than
all together, (b) the operation of the subsystems continues
to evolve as a result in device addition/removal/upgrade and
software changes and (c) a static checking must consider all
possible interactions. The last part is crucial since the only
way to rule out conflicts is to consider the most extreme
scenarios where most of the possible conflicting operations
happen concurrently — a situation that may have no relevance
to reality.

The other extreme is checking dynamically when critical ac-
tions are requested or when conflicting operations are actually
attempted. Much of the past work considers this situation and
must resolve the detected conflict by taking immediate action,
usually blocking or delaying the less important activities.
Thus, proactive conflict avoidance is no longer possible.

In this paper, we explore intermediate situations, where we
look ahead by some time duration 7 and examine the likely
events based on the current conditions. We could then resolve
them proactively by changing the thresholds and durations, if
possible. These changes could be temporary by default but
may also be made permanent based on human input. If an
unanticipated event does occur, it can be handled as in normal
dynamic resolution, but the look ahead should handle most

events much more flexibly. The events that frequently occur
under certain conditions (e.g., energy management related
events under low or high outside temperature) can be learned
either by the system itself over time or by a separate ontolog-
ical reasoning model. For example, the energy management
subsystem can quickly know that during winter, heating is on
but AC is not, but it is harder to learn that the load shedding
signal is unlikely to be generated during winters.

Note that “looking ahead” does require the theories to
include the physics of the processes involved (e.g., heat and
mass transfer, illumination, etc.). Still, in many cases, simple
approximations should be adequate. The duration 7 above can
be chosen by considering the tradeoff between the reliability
of prediction and the flexibility in resolving the conflicts.

IV. AUTOMATED CONFLICT RESOLUTION

Given the rules and safety properties (SPs) in LTL notation,
we can use a model checking tool to find conflicts and generate
a minimum UNSAT core that contains all the conflicts. For
each conflict, we need to first trace down and find all the rules
where a change could flip the truth value. This provides us
with the rules that can potentially be weakened to resolve the
conflict. The key challenge is to determine which underlying
semantic variables should be changed in the rule conditions
and by how much so as to resolve the conflict. There are two
methods to accomplish this, which we discuss next.

A. Weighted Partial Maxsat Based Approach

A special case of constrained optimization problem called
the Weighted Partial Maxsat (WPM) has attracted a lot of
attention in the literature; for example, the recent book [12]
contains a survey of several methods. The solution approaches
include both “complete” and “incomplete” methods. The for-
mer refers to linear search or branch and bound methods that
always produce the definitive answer, whereas the latter refers
to combinatorial optimization approach that may not always
produce an answer in the limited iterations allowed.

Unfortunately, we cannot use these algorithms directly
since the problem is stated with Boolean variables only. For
example, consider the following rules where “temp and “Lum”
refers to the temperature and luminance in the room. These
two rules can conflict if both preconditions are true.

R1:Lum < 200 A open_shade = shade_open @)
R :temp > 85F) Ashut_shade = shade_shut (®)]

These rules can be translated into the following Boolean
expressions
Ry:=(ziAx3) Vs, Ro:-(z2A-w3)V -y (6)
where 1 =Lum <200, xo=temp>85F, @)
xrg=open_shade, x,=shade_open ()
We could now speak of the satisfiability of R} A Ry in (6)
purely in terms of assignment of true/false to z;’s. In the
conflict mitigation context, the problem is to flip the fewest

x;’s to make Ry A\ Ry satisfiable. We can also associate costs
with flipping x;’s and thus consider cost minimization as the



objective. The problem could then be considered as an instance
of the WPM problem. However, this approach’s problem is
that we lose the underlying semantics of x;’s and may come
up with a practically meaningless solution. Normally, the
WPM literature assigns fixed costs to individual clauses in
the formula’s CNF representation. In contrast, here, we need
costs associated with how much we perturb the underlying
state variables. Therefore, we do not use WPM approaches in
this paper.

B. Combinatorial optimization Based Apporach

We adopt a combinatorial optimization approach to bring
minimum changes to the rules to make them conflict-free. We
first pass the set of rules R through a MAXSAT solver, which
returns an UNSAT core C in case of conflicts. The UNSAT
core consists of conflicting rules and safety properties. The
next step is to find ways of “weakening” the rules.

These methods move from one solution to the next while
keeping track of the best solution found so far. The next
solution is found by perturbing some of the variables in the
existing solution so that the solution does not get stuck around
a local optimum. This is generally accomplished by making
both large random jumps in the state space and local searches
for better solutions.

Combinatorial optimization is generally described as uncon-
strained (except for simple constraints like bounds on values of
variables) for which numerous algorithms are available [13],
[14]. Of these, while Genetic Algorithm (GA) is best known,
it is often the worst performing whereas variants of simulated
annealing (SA), called very fast simulated annealing [15] have
been quite successful on many problems [16]. One algorithm
that works extremely well for high-dimensioned problems
is called DDS (Dynamically Dimensioned Search) [17]. It
initially perturbs most of the variables but perturbs fewer of
them as the iterations proceed, akin to temperature decrease
in SA. We make use of DDS in this work.

Our problem is a constrained optimization problem where
the constraint is the satisfiability of the altered formula. Several
methods have been explored for this as well as detailed in the
survey paper [18]. It is shown that merely moving from one
feasible solution to the next (i.e., entirely ignoring intermediate
infeasible solutions) is a poor strategy; instead, it is best to
use a method that attempts to balance between feasibility and
optimality when moving around in the state-space. In this
paper, we use the epsilon-constraint satisfaction method, which
appears to work quite well in practice. This method essentially
quantifies the notion of “degree of feasibility” based on how
close the proposed solution is to the constraint boundaries.
This is then used along with the current cost to decide how to
perturb the parameters.

C. Intelligent operational rule perturbation

The key to finding a near-optimal solution quickly in
combinatorial optimization algorithms is the use of domain
knowledge. The perturbations to the solution made at each
stage represent various correlations and dependencies. To this

end, we classify the safety properties into many categories and
the kind of perturbation of operational rules that can resolve
the conflict with them.

In the following, we state these categories in negative form,
i.e., describe them as a pair of temporally proximate events
that should not happen. We use the notation (C,A,X,E.t.)
to denote controller C' executing action A on actuator X,
which results in an effect (or change in some relevant state
variables) denoted FE, and this effect has persisted for the
last ¢, time units. The effect £ may concern a Boolean
variable (that becomes flipped from false to true or vice versa)
or an arithmetic variable whose value is driven above or
below some limit. In the examples below, “EM” means energy
management, “LM” means lighting management, “FM” means
fire-management, and “WM” means water-management. We
assume that the first of the two mentioned events happens first
for convenience in describing the conflict and its mitigation.

Type la: An actuator that has two logically opposite states,
receives conflicting commands from two different controllers
within a short time-period, e.g., (EM, Close, door, —, §) and
(FM, Open, door, —, 0) where ¢ is below some threshold ;.
Here the effect part could be different for the two systems but
does not matter (and hence not mentioned).

Type 1b: This is a variant of la where the control action
has multiple states as described by the effect part. The con-
flict could now arise because two controllers have opposing
effects within a short time-period, e.g., (EM, Rotate, shades,
angle=60, ) and (LM, Rotate, shades, angle=0, 0) where § is
below some threshold 0,y .

Type 2: An actuator when actuated in a specific way has
opposite impact on two subsystems the e.g., (WM, turn_on,
Sprinkler, floor_wetness>1cm, §) and (FM, turn_on, Sprinkler,
extinguish_fire, 0) where ¢ is above some threshold d,,x.

Type 3: Two different actuators receive commands (from
their controllers) that have an opposite effect on some state
variable, e.g., (EM, turn_on, Heater, temp>75F, ;1) and (FM,
Open, Window, temp<65F, d3) where J, <d;. The example
corresponds to the scenario where both the “Heater-on” and
“window-open” conditions overlap.

We now discuss how the above 3 types of conflicts can be
mitigated by changing the thresholds.

Type 1: This conflict can be resolved by making § > 6yin-
If this is done by perturbing the timing of the two conflicting
events, the perturbations must be properly correlated. In par-
ticular, if the first event is preponed, the second event should
not be preponed. Similarly, if the first event is postponed, the
second event should be postponed by larger than this amount.

Type 2: This conflict can be resolved by making 0 < dpax.
The perturbation restrictions are complementary that for Type
1 conflicts. If the first event is postponed, the second event
should not be postponed. Similarly, if the first event is pre-
poned, the second event should be preponed by larger than
this amount.

Type 3: This conflict is more difficult to handle since the
overlap can be avoided in only two ways: (a) blocking the



second event outright, or (b) postponing the second event until
the opposite action for the first event has taken place.

D. Domain knowledge based DDS

From the UNSAT core C we identify the rules R’ CR that
are directly or indirectly dependent on C. The dependency is
expressed via a dependency graph GG, where the vertices denote
the rules/safety-properties, and the (directed) edges denote the
dependency between them. We then take the transitive closure
of G (say G’) using the Floyd-Warshall algorithm. Thus, in G’
an edge 7 — j denotes that j is directly or indirectly dependent
on 7.

From G’ we mark the vertices that are in C or their
neighbors, to find R” wherein we tune the tunable parameters,
such as different thresholds and time variables to eliminate
the conflicts (if possible). In case of conflicts that do not
involve threshold or time variables, we resolve the conflicts
by allowing the higher priority event to execute the action at
run time. The term “priority” refers to the cost of not taking
action prescribed by the operational policy. For example, in
a smart home environment, the fire and safety controller
issues a command to open all doors and windows in case
of fire. Simultaneously, due to a drop in outside temperature,
the climate controller gives a command to close all doors
and windows. Such a conflicting scenario does not involve
any time or threshold variable, and hence the priority takes
precedence. In this case, since the fire event takes higher
priority, the fire and safety controller’s command gets executed
at the run time. The overall optimization problem can be
described as follows.

MinM (S (r—7)2+ (6~ 1) | +N
7 ?

s.t. R (73,8;) 9)
where 7;, 7; are the thresholds and modified thresholds respec-
tively, whereas ¢; and #; are the timings and modified timings,
respectively. N is the number of clauses where 7; or ¢; has
changed to 7; or #; respectively. M is a large number that is
at least as large as the number of clauses in UNSAT. Thus,
when the tuning cost is identical, then the objective function
chooses the solution with the minimum number of changed
clauses.

Consider an objective function f(x) of input vector z,
along with a set of constraints ¢;(z),i=1,2,...,K. Let o;(z) €
[0..C;] denote a cost measure for constraint ¢;(z) that indi-
cates to what extent the constraint is violated for input vector
2. By definition, if the constraint is satisfied, then o;(z)=0.
Let o(z)=Y"1  0i(z)/ 3%, Ci denote the overall normal-
ized cost of violating the constraints, which has the range
[0..1]. Now consider an existing solution z, and new proposed
solution x5. The € comparison between them defines a specific
way of determining if x5 is better than x; by considering both
the objective function and the constraints. In particular, sup-
pose that the objective is to minimize the objective function.

Then the “epsilon less than” relationship between 2 and z,
denoted x5 <. is defined as follows: [18], [19]:

f(2) < f(w1), if d(x2), dp(21)<e
Ty <cr1= 4 f(r2) < f(w1), if ¢(22)=0(21) (10)
d(z2) <p(z1), otherwise.

The intuition behind this comparison is that, if the solutions
x1 and zo are feasible, slightly feasible (as determined by ¢),
or having the same sum of constraint violations (the number
of unsatisfied constraints in our case), then they are compared
using their objective values f(x1) and f(x3). Otherwise, if
both x; and z9 are infeasible, they are compared based on their
sum of constraint violations. The overall scheme is discussed
in Algorithm 1.

Algorithm 1 Proposed solution of e-DDS

1: r: Neighborhood perturbation size {INPUT}

2: M: Maximum number of evaluation {INPUT}

3: xo={x1,22,...,24}: Initial solution {INPUT}

4: x™in;: [ ower bound of decision variables {INPUT}

5: x™ax: Upper bound of decision variables {INPUT}

6: xPest: Best solution found {OUTPUT}

7: procedure ¢-DDS:

8: Xbest =$0, Fbest =F($0);

9: for : = 1to M do

0: Randomly select J of the D decision variables with a probability

P(i)=1—1n(¢)/In(M), and include it in {N};

11:  For j={1,2,...,J} variables in {N}, use the domain knowl-

edge to perturb x?e“, ie. x‘;ewzx?ESt-i-ajN(O,l), where o, =

—_

r (It_nax _ x;nm ;

12:  if F(x™eW) <. FP°st then

13: Fbest :F(xnew) xbest _ ynew.
14: end if
15: end for

16: Return Fbest xbest.

Thus in every iteration in the e-DDS, the scheme identifies
a set of J decision variables and includes them to {/N}. Next,
we perturb xP°st using the following expressions

T = x?eSt +0;N(0,1), where o =7 (2} — ™) (11)

while respecting the domain knowledge as discussed in section
IV-C. If the new solution is F'(x™W) <_ F*s, then we take
x"W as the best solution, continue the same process until the
stopping criteria is reached.

V. EXPERIMENTAL EVALUATION
A. Smart-home emulation

In order to experiment with a wide variety of processes and
events in a smart home, we use a comprehensive smart home
emulator called Home-IO, built by CReSTIC laboratory [20].
The simulator is a virtual house’s real-time simulation soft-
ware that can modify the environment and automation level.
It supports third-party devices, software (Python, Matlab,
etc.), and hardware (microcontrollers, programmable logic
controllers, Raspberry Pi, etc.). Home-IO also has several
advanced physics modeling capabilities; for example, it can
realistically model changes in environmental parameters such
as temperature, luminance, etc., based on the house’s geo-
graphical coordinates.



TABLE I: Operational rules for different controllers

!;peratlona ru!es gor ngEt controller

RI | For any area A, every ten minutes the luminance value is calculated using
daylight factor function

R2 | Tf the Tuminance for any area A is less than a threshold (By), then it is night

R3 gjf the Tuminance for any area A is greater than the threshold (By), then it is

a

R4| The Tights for any area A must be turned on when a motion is detected and
luminance value 1s less than a threshold (B7)

RS | The Tights for any area A must be turned off after 2 minutes, when there is
no motion is detected, and luminance value is greater than or equal to the
threshold(B)

R6 | If the Tuminance for any area A s less than a threshold (B2) and if it is day
then open the roller shades

R7 | If the Tuminance for any area A is greater than a threshold(B2) and if it is day
then close the roller shades

R8 | The value of threshold By is greater than Bg

RO [ Tf the motion_detected for any area A is more than 3 times then, user is present
in the area

RIQ Tf no motion_detected for any area A for more than 5 minutes, user is not
present in the area

RTI[ When the user is present in area A for more than 5 minutes then user_present
mode is activated

RT12 When the user is not present in area A for more than 10 minutes then user_away
mode is activated

Operational rules of Fire controller

RT3 After two minutes the fire is detected, fire-alarm is turned on

RT4 Once the fire is detected, the smoke Ievel rises and reaches a maximum threshold
’t’ within 5 minutes

RT3 Once the fire is detected, The room_temperature rises steadily by 35F every
minute

RI§ The doors(main door, patio) and windows must be open and unlocked until the
smoke_level is less than threshold ¢

RT7 Turn off the fire_alarm three minutes after it is turned on

RT§ TIf the room temperature is greater than or equal to I55F then sprinkler_head is
activated and water_pump is open

RTY Once the sprinkler_head is activated, The room_temperature drops by 35F every
minute

R20 If the room temperature is drops below TOOF then sprinkler_head is deactivated
and water_pump is closed

R21] When the water_pump is open, the water_flow is at a constant rate of 225[itre
per minute(a constant C)

R22] When the water_pump is closed, the water_flow is zero

R23 Once the sprinkler is on, turn off the sprinkler after 4 to 6 minutes

Operational rules for Climate controller

R24 The room_temperature is calculated every ten minutes using heat_transfer
function

R25 When the room_temperature > 75F then turn on cooler and close all doors and
windows

R26 When the room_temperature < 68F then turn on heater and close all doors and
windows

R27 The outside_temperature is calculated every ten minutes using out-
side_air_temperature function

R2¥ Tf the outside_temperature drops below OF, then Toad_shedding signal is turned
on

R29 When the Toad_shedding signal is turned on then turn off the hvac or turn off
the water_pump

R3(0 When the heater is on, the room temperature rises by 35F every 30 minutes

R31| When the cooler is on, the room temperature drops by 35F every 30 minutes

R32 Tf the room_temperature is in between 66F and 71F then turn off the cooler after
3 to 5 minutes and open windows and patio door

R33 If the water_flow is 0, then the water_level is 0

R34 If the water_flow is at constant rate C for four minutes then the water_level
reaches a threshold /

R33 If the water_level 1s above threshold [ then, the flood_sensor is activated and
water_pump is closed and open all doors and windows

R35 The flood_sensor is deactivated after two minutes and evaporation starts with a
constant rate of V until the water_level reached zero

Operational rules for Security controller

R37 The doors(main door, patio) must be closed and Tocked when the door sensor
is inactive

R3§ The doors (main door, patio) and windows must be closed and Tocked until the
user is not present

R39 The garage door must open when motion is detected and when
valid_keypad_code is entered

R40 The valid_keypad_code is a predefined four digit numerical code (a constant K)

R41 The garage door should remain closed when wrong keypad_code is entered by
user and when there is no motion detected

R42 When garage door is opened then unlock the main door

R43] The intruder alarm should turn on if wrong keypad_code is entered more than
three times for accessing main door or garage door

R44] The main door should open when a valid_keypad_code is entered

R43 The intruder alarm should go off after 3 minutes

R46 When intruder alarm is on, then Tock main door, patio doors and windows

Operational rules for Surveillance controller

R47 For any area A, Until the user_present mode is activated the security_cameras
(indoor_camera,outdoor_camera) should record video for ‘t’ time slots

R48 The video recorded is analyzed for any unlawful activity

R49 In case of unlawful-activity exhibited by user, the security alarm turns on

R50 The security_alarm is turned off after two minutes

Home-IO provides a simplified model to simulate real-time
heat transfer, including radiation, convection, and conduction

TABLE II: Safety Properties

ID | Rule Description

S1 When the sprinkler is on for three minutes, then the water valve is off

S2 When the fire alarm is on for more than 1 minute, main door, patio doors and
window are opened for 8 to 10 minutes

S3 The windows must not be unlocked and open when the heater or cooler is on

S4 When the heater or cooler is on, the main door and patio door should not be
open for more than 5 minutes

S5 If the garage_door is opened for more than 2 hours then close the garage_door

S6 During night if the fire alarm is on then turn on the lights for 3 to 4 minutes

S7 The AC and the heater must not be on at the same time

S8 All the doors and windows must be closed within 2 minutes when user_present
mode must is activated

phenomena. Exchanges between different air masses are simu-
lated. Door and window opening/closing affect the temperature
as in a real house due to temperature differential between
outdoors and indoors and the airflow. The wind facilitates
the transmission of heat between the house and outside air.
The upwind house walls are more reactive to outdoor heat
transfer. Cloud cover decreases sun and sky radiation effects.
Eventually, humidity changes the dew point, which affects
how the outside air affects the house temperature. The home
has multiple rooms, each of which has facilities for smoke
detection, carbon monoxide detection, smart lights, smart
window blinds, smart doors, etc. Therefore, the house is a
“black box,” a data source, and a place for experiments.

Because of all these features, we believe that the use of
Home-IO is far more powerful than a real smart home con-
troller (e.g., Samsung SmartThings [21]), where the readings
of various sensors or actuators would be either extremely
limited or artificial (e.g., pretending that there is a fire). Our
control and analysis logic was implemented in Python using
visual studio 2020 (version 1.46) installed on an Intel(R)
Core(TM) i7-7700 CPU @ 3.60 GHz, 32 GB RAM, and 1
TB SSD.

Fig. 1(a) shows our simulated scenario using Home-IO.
For simplicity, we consider only two rooms in the home,
namely the kitchen and living room (LR), which have only 20
out of a total of 112 various IoT devices. Operational rules
for automation of these devices and the conflict detection,
resolution algorithm are implemented as appropriate Python
routines.

B. Emulated IoT system in Home-10

In this section, we introduce the motivation of our work
by presenting a moderate scale IoT scenario deployed in a
typical IBMS, as shown in Fig. 1(b). The system comprises
five controllers running the following dedicated services:

(a) Lighting Management, on controller C1, that manages
the lighting of the connected devices providing perfect lumi-
nance settings inside an IBMS.

(b) Fire and Safety Management, on C2, provide safety for
residents in case of fire.

(c) Security Management, associated with the controller,
C3 that controls the entry or exit of users, further preventing
unauthorized access.

(d) Surveillance and Monitoring, on controller C4, monitors
the unlawful activities of people inside and outside the IBMS.
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(e) Climate Control, is a subsystem on C5 that sets out
energy-saving features and user convenience along with con-
trolling and maintaining ambient climate service.

The subsystems interact with one another when operating in
a shared space. For convenience, we designed the interaction
between the smart devices within and across subsystems as
routines. A routine may be either user-initiated or event/time-
triggered. Our simulated model allows full flexibility to set
complex routines, including components for catching and
responding to concurrency conflicts and safety property vi-
olations.

Fig. 1(b) shows the interactions between the controllers,
sensors, and actuators. Note that all actuators other than
the fire-alarm can be operated by more than one controller.
However, the preconditions and the purpose differ widely from
one service to another. For example, the energy management
controller uses the light switch for saving power, whereas the
safety management controller takes over control during an
emergency. For simplicity, we assume that the sensor readings
themselves are universally visible to all controllers.

Based on the scenario presented in Fig. 1(b), we develop
50 operational rules that are specific to each controller and
verify them against five types of safety properties defined in
section IV. Various rules and safety properties are listed in
the Tables I-II. We only list the textual version of the rules
for readability and space reasons, rather than the actual LTL
version used for the implementation. As an illustration, rule
R16 and R35 can be translated to LTL using the until (U)
operator as follows:

G[X(V; doors;=open A V; windows;=open U (smoke_level < 1]

G[X2(flood_sensor = activated A deactivate_flood_sensor —-
flood_sensor = deactivated A evaporation(v) U (water_level = 0)]

C. Implementation of e-DDS in Home-10

Fig. 2 shows our overall approach of how the existing
Home-IO emulator is modified to implement e-DDS. Oper-
ational rules, safety properties, and device descriptions are
fed into the Home-IO simulator. The log file provides details
of each event, the event timestamp, the event’s duration, and
the actions taken. It is then used for modeling interactions
between devices and rules to build a Finite State Machine
(FSM). In an FSM, the device states and operational rules
correspond to the state and transactions, respectively. The state
can be represented using the values of features/attributes of
each device. For example, a thermometer may have a pair of
attributes, namely time and temperature, where the temperature
reflects the value measured at the specified time. A device’s
state may be changed via measurement action (in the case of a
sensor device) or by external input (in the case of an actuator).

The inputs to the model checker are (i) Operational rules and
safety properties in LTL, and (ii) Specification of every IoT
component (e.g., sensors, actuators) in the form of a transition
system built from the log file. The FSM is verified against a
model checker to identify the conflicts. In case the model-
checker finds some violation of safety properties, it provides
a counter-example that denotes the unsatisfiable (UNSAT)
clauses that lead to the property’s violation. Our proposed
algorithm ¢-DDS then takes the UNSAT clauses and perturbs
the time or threshold variables intelligently to resolve conflicts.
The output of ¢-DDS finally returns a set of satisfiable clauses
that indicate the conflicts are resolved.

D. A case study

For the case study, we pick up a case that starts with the
rules <R1, R2, R4, R5, R9, R11, R24 to R31, R44> that are
non-conflicting, and then add the conflicting rules <R 13, R16,
R18, R21, R23, R35, R43, R47>. Beginning with the event,
“fire detected in the kitchen”, multiple things will happen as
shown in Table III.

Based on all these violations of safety properties, the model
checker returns a UNSAT. After that, our conflict resolution
scheme perturbs the following thresholds: (a) kitchen tem-
perature threshold, (b) LR temperature threshold, (c) smoke
level threshold, (d) water-level threshold, (e) time duration of



TABLE III: Sequence of Events Due to Kitchen Fire

1 Smoke level rises = Smoke detector turns on after 2 minutes =
Smoke detected.
2 Kitchen temperature rises up to 100F.

3 Sprinkler head is activated, and sprinkler is turned on =- Water
pump is turned on.
4 Water flows at a constant rate (rule R21) but due to the low

evaporation rate, water level threshold is reached before the fire
is extinguished.

5 Consequently, floor flooding sensor is triggered, and the water
pump is off. This creates a “conflict” which can be resolved by
changing the water-level threshold.

6 Because rules R15 and R25 are triggered, the kitchen AC is
switched on as the temperature rises above 90F. The AC will remain
on until the temperature goes down to 70F.

7 The high smoke level causes the LR and kitchen windows to be
opened, which will stay open until the smoke level drops below a
threshold as defined by rule R16.

8 LR temperature drops to 67F = Rule R26 turns on the heater =
safety properties S4 and S7 are violated.

9 Due to nightfall, rule R4 turns off the lights, but safety property
S6 states that the lights must be on for 3-4 minutes in case of fire
at the night, creating a conflict.

10 | Rule R11 implies that the user is home = safety property S8
requires that the doors/windows be closed within 2 minutes. But
this is not possible due to R16 = S8 is violated.

11 | Meanwhile, an intruder enters successfully (using guessed main
door key-code) = R43 triggers intruder alarm.

12 | User present = Surveillance cameras disabled, but intruder alarm
on = Record video. Here the conflict is resolved by priority-based
resolution.

Solution 1: 4.10, 69.4, 70.0, 5.1, 3.9, 4.5

Best objective function value of 94.617664 found at Iteration 180
Time of execution for Trial 1 was 0.0172460.018429 seconds or
0.000005 hours.

Solution 2: 3.5, 73.4, 74.0, 5.4, 4.3, 4.05
Best objective function value of 101.675437 found at Iteration 195
Time of execution for Trial 1 was 0.018429 seconds or 0.000005 hours.

After running Model Checking: No UNSAT clauses in Solution 1 and
Solution 2
Best Solution is: Solution 1

Fig. 3: Results from e—DDS Algorithm

window and door opening, and (f) motion-detection thresh-
old. These decision variables are passed through the -DDS
algorithm. The results are shown in Fig. 3. The results show
that we have two solutions along with the new values of
decision variables, and based on equation 10, the best solution
is selected. With updated rules passed through the model
checker, satisfiability is achieved.

The case study shows multiple asynchronous events, all
occurring concurrently to create numerous conflicts for illus-
tration purposes. Suppose in our lookahead mechanism, we
can establish, based on the prevailing conditions, that certain
events cannot co-occur or are not very likely. In that case, we
can limit the conflicts and hence the need for perturbations.
As mentioned earlier, this also depends on the time-horizon
chosen. If we look ahead by only 30 minutes, several of the
co-occurring events can be considered very unlikely, but a 4-
hour window will make several of them worth considering. If
we consider a 4-hour lookahead window without considering
the moderately likely events, we will end up with more priority
based resolutions.

E. Evaluation results

To evaluate the performance of £-DDS, we implemented
our algorithm along with Home-IO and satisfiability solver
NuXMV on a desktop with Intel(R) Core(TM) i7-7700 CPU
@ 3.60 GHz, 32 GB RAM, and 1 TB SSD. We start with a
baseline system of 50 operational rules and safety properties
(hereafter called “rules”). We generate many conflicting sce-
narios for this, as described in the case study. The system
includes 19 rules with perturbable thresholds. We consider
three possible perturbations of each of these rules, thereby
yielding a total of 57 different possible perturbations. For
these experiments, we use simplified physics as mentioned
in section V-A so that the processing time of a case is mostly
dominated by satisfiability checking rather than by physics.

Fig. 4(a) shows the results that are averaged over 57 such
cases. The x-axis indicates the number of iterations needed
by combinatorial optimization. It is limited to a maximum of
200, whereas the y-axis shows the percentage of cases where
the algorithm could resolve the conflicts. It can be seen that
our algorithm, powered by domain knowledge, can resolve
the conflicts in 100% of the cases in about 175 iterations.
In contrast, the normal-DDS, without any domain knowledge,
can fix only 53% out of the test cases at 200 iterations.

We further evaluate our algorithm’s performance where
we create somewhat different conflict-causing scenarios by
adding more operational rules. We first begin with a set of
non-conflicting rules and then add more operational rules to
create 29 different conflicting scenarios. Fig. 4(b) shows the
comparison of normal-DDS and £-DDS for these 29 scenarios.
It can be seen that the Normal-DDS algorithm, due to lack
of domain knowledge, manages to resolve the conflicts for
only 54% of the total generated conflicting scenarios after
200 iterations. In contrast, our algorithm can fix all of the
conflicting scenarios.

It is essential to note that the change in thresholds may not
resolve the conflict permanently and instead only postpone its
occurrence. For example, if a rule says that the window must
be shut because the person is at home, and the temperature
continues to rise, it may cross the increased threshold per-
turbed to resolve the conflict. From a practical perspective,
such situations become increasingly unlikely as thresholds are
altered, but the potential conflict cannot be entirely ruled out.
The ultimate resolution may then occur either by traditional
means (e.g., priorities among actions) or by some action that
is entirely outside the behavior captured by the formal model.

Fig. 4(c) shows the comparison of normal-DDS and e&-
DDS in terms of processing time as the number of rules
increases. Notice that the y-axis is in log-scale; therefore, the
advantage of e-DDS in terms of speed is quite substantial. This
figure shows that our approach to dynamic conflict detection
and resolution can comfortably handle rather large systems
regardless of whether the resolution is done proactively (by
changing thresholds) or reactively (by using relative priorities
or cost).

Fig 5 shows how the running time of our algorithm varies
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with the number of rules and the fraction of those rules that are
eligible for perturbation. For this, we consider two additional
cases with 100 and 200 rules (in addition to the original 50).
Using the same scheme for perturbation as described above,
we have a total of 57, 114, and 228 possible perturbations
in the 50, 100, and 200 rule cases, respectively. We consider
varying fractions of these possible perturbations in Fig 5, i.e.,
for the case of 100 rules, the fraction 0.4 means that (0.4x114)
perturbations are considered.

The left Y-axis corresponds to the per-iteration cost, which
is seen to grow both with the fraction of perturbable rules and
the total number of rules. The growth is nonlinear but relatively
slow. The number of iterations, shown via bars with the scale
on the right Y-axis, also grows non-linearly but at a somewhat
quicker pace. Since our tests were carried out on a relatively
modest consumer desktop, we believe that the mechanism can
quickly scale to thousands of rules with a well-equipped server.
This, of course, assumes a simplified physics, which should be
adequate in most cases. More precise physics based emulation
would require more computing power in extensive systems.

VI. CONCLUSIONS

In this paper, we have examined the problem of conflict
detection and mitigation in large IoT systems by introducing
the notion of “safety properties” (SPs) that could potentially
conflict with operational rules (ORs) of the system. We allow
both the ORs and SPs to include time and temporal logic
operations as an integral part. We allow the model to “look
ahead” to proactively catch most (though not necessarily all)
potential conflicts and mitigate them by temporarily perturbing
the various thresholds or durations in the rules, if possible.
Such an approach offers much more flexibility in dealing with
conflicts than resolving the conflicts reactively by blocking

or delaying one of the conflicting actions. We show that
our mitigation approach, based on intelligent combinatorial
optimization, can resolve the conflicts in 100% of the cases,
as long as such a resolution is feasible and easily scales to
hundreds of rules or more.
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