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Abstract—Multi-tiered storage is used in enterprises to reduce
data access latency. In these storage systems, data is moved from
a lower to a higher tier in an effort to reduce the average latency.
The decision used to determine which data elements to move to
the higher tier is usually done on a nightly basis. In this paper, we
explore a Just-in-time Intelligent Tiering (JIT) mechanism that
operates on a much shorter time scale than traditional tiering.
The JIT mechanism generates a set of candidate movements and
uses a control method to further refine the candidates. Based on
extensive simulations in a 3-tier system consisting of HDD, SSD,
and Intel Optane drives, we show that the proposed scheme can
reduce the average latency by up to 76%.

Index Terms—Storage System, Tiering, Data migration

I. INTRODUCTION

Modern storage systems need to deal with an increasing
amount of data volume, yet, only a very small fraction of the
data is needed frequently for the duration of a task. With many
established and emerging storage technologies that provide
different levels of capacities and performance, it is natural to
organize a storage system as a hierarchy where the slowest (but
usually the cheapest and hence largest capacity) devices lie at
the bottom and the fastest (and most expensive, and hence
smallest capacity) devices at the top. Intelligent movement of
data across these tiers is crucial for achieving the best possible
performance at the lowest cost. Traditionally, tiering has been
done on a very coarse time granularity (e.g., nightly). In this
paper, we consider a much more agile (and hence finer grain)
intelligent tiering that can take advantage of the emerging
high-speed storage technologies.

In particular, we introduce a novel mechanism called Just-
in-time Intelligent Tiering (JIT) and show how it can lead
to substantially lower IO latencies. The JIT mechanism is a
tiering mechanism that makes migration decisions, in fixed
short-term intervals, throughout the day. It works on the block-
level user requests and has no visibility to file-level details.
JIT performs this migration in two steps: (a) providing a set of
data movement candidates by learning to predict the short-term
relative order of accesses to data elements, and (b) estimating
the long-term benefit of migrating a subset of the proposed
movements to a different tier and making those migrations if
it is advantageous. Since JIT learns end-to-end, it avoids the
need of manually developing and tweaking features to feed
the model.

The rest of the paper is organized as follows. Section III
discusses the related works. Section IV describes the so-
phisticated simulation environment that we built for multi-

tiered storage systems. Section V describes the challenges
and essential details of the JIT method. Section VI then
presents the implementation details. Section VII discusses
the evaluation results using several storage traces. Finally,
section VIII concludes the paper.

II. TIERING IN STORAGE SYSTEMS

A. Traditional Tiering

In current systems, the hard disk drives (HDDs) form the
bottom layer of the tiering hierarchy, and the solid-state drives
(SSDs), based on NAND "flash" technology, form the top
layer (i.e., 2-layer hierarchy). The emergence of SSDs as
increasingly inexpensive and faster storage makes them ideal
as a high tier in SSD-HDD tiering arrangements; however, this
hierarchy is still limited by the rather high latency and low
transfer rates of HDD if the popularity of the data changes
frequently.

Traditionally, tiering decisions are made infrequently, com-
monly on a nightly basis. In particular, the system observes
the popularity of IO blocks or objects over the entire day, and
during low-traffic late night hours, the items are moved up or
down the hierarchy based on a statistical method that records
their popularity, such as least recently used (LRU) or least
frequently used (LFU). One key reason for relegating tiering
related data movement to low traffic periods has been the very
low IO bandwidth and high latency for HDDs. For 4KB IOs, a
typical HDD can provide ≈ 25K IO/sec (IOPS) for sequential
transfers and as low as 1/100th as much for random transfers,
whereas the latencies can be as high as ≈ 5ms (depending on
the seek and rotational latency components). HDD can achieve
higher bandwidth by striping data across many drives.

With the emergence of newer storage technologies, most
notably the Intel Optane based disk drives, it is attractive to
use this technology as the top tier, because of its ability to
provide far lower latency than an SSD (≈ .10µs vs. > 100µs
for SSDs). The highest two tiers have comparable but hugely
higher IO rates than HDD (e.g., ≈ 1M 4KB IOPS, and no
substantial difference between sequential and random IO).
However, because of the much higher cost of Optane, this
tier must necessarily be much smaller.

B. Motivation for JIT

Modern tiering systems consist of devices with very high
data rates and must accommodate highly dynamic workloads.
The adequacy of traditional tiering needs to be questioned.



Fig. 1. Illustration of JIT Deployment in a Storage System

In particular, simply identifying complex patterns of access
and using them for traditional tiering overnight is inadequate
since the patterns themselves tend to change at much shorter
time scales. This provides the motivation for a much shorter
time scale tiering, that we call Just-in-time Intelligent Tiering
(JIT). Fortunately, the enormous IO bandwidth provided by
solid-state storage technologies can easily accommodate the
much higher tiering frequencies.

The key idea of JIT is to monitor the popularity of data, and
use it for making movement decisions over a short observation
time window, henceforth called the JIT Window. The JIT
window can be on the order of minutes or hours versus the
traditional tiering window which happens over 24 hours. While
this seems like a simple change, it has profound implications
for the storage system and requires study. The key issues to
consider are (a) the in-line data movement and its management
may place substantial stress on the storage server and may
interfere with the normal IO; and (b) since the popularity of
data over the rather short JIT window can be unreliable, a
simplistic frequency based movement no longer suffices.

The basic unit of IO is typically a "block" of size 512B
or 4,096B, addressed using a sequential number called LBA
(Logical Block Address). However, for tiering purposes, keep-
ing track of individual LBAs is not practical in a large storage
system. Instead, it is more practical to use a much larger unit
typically of several MB, which we call a "chunk". Unnecessary
movement of large chunks can be costly, not only in terms of
IO bandwidth used but also could delay normal user requests.

The optimal JIT window duration is a complex function
of many parameters and is beyond the scope of this paper;
however, we shall discuss the considerations in our choice.

C. Architecture of JIT System and Scope of Work

JIT mechanism employs a migration policy that consists of
two parts. The first one generates chunk movement suggestions
based on the expected popularity of the chunks that are learned
from the user IO traffic and the condition of the storage
system. The suggestions are fed to the second component
which refines the proposed movements, based on the long-
term benefits, and issues the actual movement commands. The
features required for both parts are hard to engineered directly
and we opt to learn those features by having each part interacts
with the storage system (as discussed later). This would need
extensive training using the real user IO traffic to make good
decisions. However, live training in the storage system poses

three potential adverse impacts: (a) poor movement decisions
until much of the training is done, (b) overhead of capturing
the IO requests to feed to the algorithm, and (c) CPU, memory,
and storage consumption associated with the training itself.
Given the criticality of IO performance in production systems,
none of these overheads are likely to be acceptable.

We thus propose a two-stage process for operating our
mechanism as shown in Fig. 1. In addition to the storage
server (SS) we have a training server (TS) located on the same
network segment as the SS. We envision the TS to be a self-
contained appliance that is equipped with a local disk, CPU,
memory, and a GPU to handle the training load. The TS uses
a storage tier module that simulates the real storage hierarchy
of SS. This module captures the queuing delays experienced
by the user IO and chunk transfer requests. It also represents
each device simplistically in terms of its observed read/write
latency and bandwidth. The storage tier module only keeps
the status of each chunk (and requested LBAs) but does not
keep the actual data of the chunks. The SS collects the trace
segments using a sampling strategy and periodically send them
to the TS so the trace space requirements at SS remain small.

Such a system would initially use traditional tiering in the
SS while the model is training. The trained model is then
transferred to SS which then uses it with the JIT execution
module for making real tiering decisions. Querying the trained
model is not expensive and does not have any appreciable
impact on the SS. Meanwhile, the model in TS could con-
tinue to train further, possibly with occasional updates to the
simulation parameters (e.g. IO bandwidth), if appropriate. The
updated model could be transferred to SS occasionally (e.g.,
nightly or once a week) so that the JIT can easily track any
evolution in the workload.

The purpose of this paper is only to examine the operation
of the TS and confirm the benefits of JIT over the traditional
tiering with respect to overall latency experienced by the user
request. Building out the entire solution as depicted in Fig. 1
is out of the scope of this paper and will be reported in later
works. For this reason, this paper only concerns the simulation
of the tiering system using publicly available storage traces.

III. RELATED WORKS

To the best of our knowledge, the technique proposed in
this paper is novel and has not been reported elsewhere, even
though specific elements (i.e., reinforcement learning, tiering,
etc.) are well explored.

Curator [1] comes closest to our work. It applies reinforce-
ment learning (RL) to decide a hotness threshold for moving
data from HDD to SSD. To identify cold data (to be kept in
HDD), it uses a mechanism similar to map-reduce to build
global visibility. In this RL application, the states, rewards,
and actions represent the resource usage, the amount of latency
reduction, and whether or not to perform tiering respectively.
In contrast, we use the RL to decide not just when to move,
it also decides what to move and to which tier.

Herodotou, et.al. [4] use an automated approach to upgrade
and downgrade files based on access to a storage tier of a dis-
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tributed file system like HDFS. Authors use machine learning
(ML) i.e. gradient boosted trees for file access tracking and
prediction; uses file-level metadata and access for decision
making; and migrates the entire file. In contrast, we migrate
fixed size chunks, since the storage system does not have any
file-level information.

Likewise, Vengerov [12] uses RL to learn the utility func-
tions in the context of dynamic data migration in a hierarchical
storage system. The author uses RL to tune the parameters of
the tier cost function on which the migration decision depends.
The goal of the work is to design an automated migration
policy to minimize the average response time of the system.

Tsai, et.al [11] provide a resource allocation strategy to
deal with heterogeneity across storage servers. A score is
projected for every access based on the degree of randomness,
frequency, and location in the storage tier. The authors then
formulate an ILP to minimize response time and use the
heuristic to get the resource allocation map. Based on the
system load their technique performs a mix of minimal and full
migration across tiers. In a cloud storage environment solving
a complete placement problem and applying those outcomes
seems unrealistic.

Noel, et.al [8] suggest ML based adaptation process for load
balancing and migration where the system tunes its parameters
as workload changes. The method detects possible hotspots,
workload-interference and uses a stochastic policy gradient
based RL to learn long-term policies to fix these bottlenecks.
But long-term policies do not capture short-term changes in
the workloads. Hence, we consider both short and long-term
workload behaviors for migration decisions.

Ziggurat [15] uses an intelligent data placement policy
that places small, synchronous writes to NVM and large
asynchronous writes to the disks for better space usage and
performance. It uses two separate predictors for synchronicity
and size to predict the future access behavior and accordingly
steer the writes to the appropriate tier. Eventually, it coalesces
cold data from NVM to free up space and also move read
dominated traffic from HDD to NVM tier, but the priority
here is the placement of the data and not migration.

AutoTiering [13] is used for virtual machine file (VMDK)
placement and migration in a multi-tier all flash storage array
to optimize the resource usage, performance, and migration
overhead by reducing the number of VMDK file migration as
IOPS increase. In our work, we migrate only necessary data
at a granularity much smaller than that of the VDMK files
which are usually large in size.

IV. DETAILED JIT ARCHITECTURE

In this section, we discuss the details of the JIT training
module, storage tier module, and trace agent (see Fig 1). The
JIT execution module uses the trained model to migrate data to
the appropriate tier in the real storage hierarchy. Each device in
the storage tier model is simulated by a separate process. The
trace agent is responsible for replaying the historical traces to
train the JIT system.

Fig. 2. JIT Architecture

In our simulator, the functionality of the three modules in
the JIT deployment is simulated with five primary modules.
The trace agent and storage tier module are simulated by the
request generator module and storage module respectively. The
functionality of the JIT training module is simulated across
three modules: an orchestrator module, a migration controller
module, a tier proxy module that facilitates transactions be-
tween the controller and the orchestrator. We built our discrete
event simulator (DES) using SimPy [9].

Request Generator Module: The request generator module
plays a similar role to the trace agent in the JIT deployment.
As shown in Fig 2, the request generator module reads the
trace files, generates IO requests, and sends these requests to
the orchestrator. An IO request can be described with a 5-tuple:
(request id, issuing timestamp, logical block address, request
size, request type). As a request completes, the completion
comes back to the request generator which then captures the
completion time of the IO. This concludes the life cycle of an
IO request.

Storage Module: In the storage module, we assume that
each tier contains one type of device. The devices in each tier
have different latency and capacity characteristics. The storage
system we consider consists of three tiers. The top tier is Intel
Optane, the middle tier is SSD, and the lowest tier is HDD.
For the HDD tier, we assume that the chunk is striped across
8 HDDs, so that while serving a transfer request, it can be
read from or written to all 8 drives in parallel.

Migration Controller Module: The migration controller
module consists of two components. The first is the proposal
component which predicts which chunks are most likely to be
accessed in near future. The other is the control component
that is responsible for refining suggestions to determine which
data chunks should be migrated to which tier. The proposal
component generates potential movements based on the es-
timation of the most likely accessed chunks in the next JIT
window. The control component refines the proposed move-
ments to ensure that long-term improvements are not sacrificed
for short-term hits on the higher tier. For simplicity, we work
with a fixed data chunk size, which is assumed to be 8MB.
The optimal chunk size could be environment-dependent, but
we do not study that aspect here. Periodically, the migration
controller determines whether the proposed transfers should
be made, and if so which chunks should be transferred to
which tier. It determines this by looking at the environment and
the effects that previous migrations had on the environment.
During this interaction, the tier proxy module passes several
pieces of information extracted from the environment to the
migration controller, and the migration controller uses the
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information to determine how effective its policy is.
Orchestrator Module: The orchestrator module is designed

to receive both the I/O requests and the migration commands
from the request generator module and the migration controller
module respectively, and forward them to the corresponding
devices. While forwarding the requests, the orchestrator fol-
lows the priority of the requests where the IOs get higher
priority than the transfer commands. Upon receiving a transfer
command from the orchestrator, the storage tiers serve the
command immediately if and only if there are no pending IO
commands directed to the source and the destination tiers of
the transfer request. For each transfer, a chunk is first read
from the device where it currently resides, then written to the
tier where it is transferred to.

Tier Proxy Module: The tier proxy is the module that com-
municates with the migration controller and issues the transfer
commands to the orchestrator. Periodically, the tier proxy asks
the migration controller for the transfer recommendations. The
migration controller gives a list of the chunks that should be
moved to higher tiers, i.e. the chunks that should be moved
to Optane and the chunks that should be moved to SSD. The
proxy will then decide the chunks that need to be evicted or
transferred back to the lower tier. The proxy will first select
the candidates for eviction, write them back to the lower tier
and finally start the chunk transfer from low to high tier.

In this simulation, we assume that the HDD tier is inclusive
i.e. contains a copy of all the data present in Optane and SSD
tiers. Hence during evictions from Optane or SSD to the HDD;
we only write back the dirty chunks. Whereas a clean chunk
is discarded and assumed to be transferred in zero time.

V. METHODOLOGY OF JIT

A. Challenges in JIT

JIT can potentially outperform traditional tiering since it
can account for the current workload characteristics in making
tiering decisions. There are a lot of different challenges which
need to be addressed in JIT, we discuss three efficiency
challenges.

One challenge is selecting the chunks that should be moved
to each tier from all the chunks in a storage system. One may
argue for an exhaustive method that enumerates the value of all
the possible chunk combinations. However, searching all the
combinations through the entire chunk space is a combinatorial
problem and is not tractable. Additionally, the value of each
combination changes over time. Therefore, we introduce a
proposal component to provide the list of possible movements,
based on the estimated highest usage in the next JIT window
with combined chunk size equal to available space in the
higher tiers. Although we reduce the search space a lot by
the proposal component, deciding which movements from the
proposed list also has a large search space when considering
all the possible partitions. Since JIT needs to make movement
decisions based on the value of selected movements over time,
keeping track of the different decisions for each time window
makes the search space of the decision sequences difficult
to deal with. Thus we use neural networks in the control

component to generate estimate values for each action which
explores the space more efficiently.

Ideally, if we can learn the phase shifts whereby the hitherto
popular chunks are likely to become unpopular (or vice versa),
we can account for that in deciding on evictions from and
transfers to the higher tier. To address these aspects, we can
generate a set of candidate chunks, for migration to higher
tiers, based on their expected popularity in the near future.
Then from amongst these candidates, we select a subset based
on the current load, available space, and other information
extracted from the environment. Since some of the preceding
is not directly observable for the tiering system, we developed
a machine learning model that should implicitly capture the
relevant environmental information.

B. Estimating accesses

To get an initial list of chunks to move, JIT needs to have
an understanding of what the current workload may look like.
This is not an easy challenge because there are factors that JIT
cannot measure and also because of the stochastic nature of
the problem. One element that would be relevant to predicting
workload is the number of data requests to chunks over the
next time period. We must predict those values and use those
predictions as part of deciding what chunks to move. We do
not want to provide an expertly engineered set of features, as
these may work for only some workloads and not others. This
means that we must learn to estimate the number of accesses
from the raw data available to the JIT system.

The raw data, which is available, is the information that is
readily acquirable or can be easily kept track of in a storage
system. Examples of these include (see section V-D) read
accesses to each chunk, chunk location in the tier hierarchy,
and time period of access. As part of determining the chunks
to migrate, we would like to transform the raw data to some
sort of prediction on what will be used in the future and the
consequences of the migration. We simplify the problem, by
noting that if we only consider one time period, the most
important element of predicting the accesses for that time
period is the relative order of chunks. So the primary job of
the proposal component is to take the raw data and output the
relative order. Then based on the relative order and the location
of each chunk, the proposal component generates the potential
movements which transfer the expected most accessed chunks
to the higher tiers if the chunks are located elsewhere currently.

C. Searching through the control space

The control component receives the set of potential move-
ments from the proposal component and identifies which
chunks are ready for migration. To do this, the control com-
ponent needs a method that searches efficiently through the
control space by interacting with and observing the environ-
ment. Reinforcement Learning (RL) [10] is well suited for
the control component since it allows the control component
to explore the space of possible migrations and learn from
experience without the need to try every possible migration.
Through exploration and exploitation, the control component
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decides what possible migration it should take across the
various situations the environment may be in. Since the goal
of the migration controller module is to reduce the average
latency of requests over the long term, the control component
will learn from experience what portion of the proposed data
movements it should actually move. For each migration, the
control component receives a reward or gets a penalty. The
control component learns which action to take, that is the
proportion of data to move, by estimating which action returns
the highest reward.

We use Q-Learning [10] to map the set of actions, in any
state the environment may be in, to values that represent the
expected latency from taking those actions. Since the number
of possible states is extremely large, we need to get the values
of different regions of the state space efficiently. To make this
tractable, we need a way to approximate those values. We
use neural networks to perform this function approximation.
The merging of reinforcement learning with deep learning
is referred to as Deep Reinforcement Learning (DRL) [6].
Specifically, we use DQN [6], which allows us to approximate
the value of actions in a given state.

D. State Construction for Migration Controller Module

The purpose of the state is to represent the current condition
of the environment. The migration controller module uses the
state as a proxy for learning about the workload. Since keeping
around the history of all requests, chunk locations, and other
details about accesses will be infeasible as time goes on, the
state st at time t (t=0,1,2,...) only captures the observations
of the environment at t.

State at time window t
Rt,Wt,Rt+Wt read, write, both read & write request accesses

Xt order of sorted long-term accesses for each chunk
Ot,Pt chunks located in Optane & SSD tier
Yt,Zt sine & cosine value of the relative time

Table I
STATE COMPONENT

We provide several chunk-level features to characterize the
state in a storage system. The requests that the storage system
receives are 4-tuple block-level messages. We convert these
requests into chunk-level information. Each request contains
the LBA, I/O type (read or write), timestamp, and the size of
this request. Let nl be the total number of LBAs in the storage
system and let all the LBAs be represented as the set L=
{L1,...,Lnl}. Let Sl denote the LBA size and Sc the chunk
size. We define |C|= Sc

Sl
, be the number of LBAs per chunk.

For each chunk, Ci=L(i−1)∗|C|,··· ,Li∗|C|. The total number
of chunks is n=

⌈
nl

|C|

⌉
. Table I shows the state components

we used. The following paragraphs describe the construction
of these components.
Rt,Wt,Rt+Wt: The read and write accesses are not always

in lockstep. Therefore, we include both read and write as part
of the state representation. Fig. 3 shows the heatmap of read
and write accesses collected on a Friday for the usr workload
in the MSR dataset. As shown in Fig. 3, the read and write
accesses tend to display different patterns across workloads.
We divide the trace into JIT windows of size τ . To calculate
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Fig. 3. Heatmap of read and write accesses of Friday for MSR workload

the access frequency of each chunk, during a JIT window,
we aggregate all the accesses to LBAs within that chunk. Let
Rt,Wt ∈Rn denote the total number of read and write requests
at time window t. The vector [Rt,Wt,Rt+Wt] is then used
to build part of the state.
Xt: Besides the short-term chunk accesses, we also capture

long-term chunk accesses to build the state. Long-term ac-
cesses to the chunks are collected based on the chunks’ LBA
accesses over the previous 24 hours. The migration controller
module does not need the exact chunk frequency for migration
decision, instead, it only requires the relative frequency order
of the chunk accesses. We construct a vector Xt of length n
to represent the relative frequency of each chunk in time step
t. For i∈{1,..,n}, xit is the order of chunk Ci in the sorted
list.
Ot,Pt: We can use the environment to capture the tier that

each chunk resides on. As stated above, that HDD contains
the set of all chunks. The set of chunks in Optane and SSD
are disjoint. Hence we only store the chunk to tier mapping
for the Optane and SSD tiers in two binary vectors of the
length n, denoted as Ot and Pt respectively. If chunk Ci is in
Optane, oit=1, otherwise, oit=0. Pt has the same structure.
For a given chunk Ci, oit and pit cannot both be equal to 1.
Yt,Zt: The time that the request is made is also useful to

capture since the workload may follow a pattern based on
frequency. For example, the peak of the requests coming to
the storage may be at the same time of the day (e.g., 10 am).
We apply sine and cosine functions to the relative time and
get two numbers back. Then we build one vector Yt of length
n where the element’s value is set to sin

(
t
Td
·2π
)

and another
vector Zt of the same length n where the element’s value is
set to cos

(
t
Td
·2π
)

, Td is the total time we have in a day.
Finally, for each time step t, the state is constructed to

be an array of shape n×8 using the above information,
st= [Ot,Pt,Rt,Wt,Rt+Wt,Xt,Yt,Zt].

E. Formalization of Migration Controller Module

As stated above, our chunk movement decision starts with
the proposal component generating a list of possible move-
ments to higher tiers, henceforth denoted as M . First, the
proposal component takes in the states st and outputs a list Dt

that contains the relative order of the estimated chunk accesses
in time t. Then we form the possible movements based on the
corresponding values of Ot and Pt which provides the chunk
location information. Let NO and NP denote the capacity of
Optane and SSD respectively. If the element dit is the top NO
values of Dt and oit=0, we add a movement to Mt where the
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destination tier is Optane. The chunk number of the movement
is Ci, and the source tier is SSD (pit=1) or HDD (pit=0).
The movement to SSD is formed in the same manner.

Let A= {A1,...,Ak} denote the set of actions where k is
the total number of actions we have. Each item in A is a
subset of M . Assume the control component decides to take
action a∈A and move the suggested data chunks. We use
the total access latency of the requests occurring during time
interval t to represent the reward rt. The higher the latency,
the lower the reward; this is achieved by simply multiplying
the latency value by -1. The access latency of the requests
at time t can be influenced by prior data migrations. Also,
the data movements of time step t may influence the access
latency of future requests. Therefore, the short-term penalty is
sometimes preferred as it may lead to long-term rewards.

Since the purpose of data migration is to decrease the
average latency for all the requests, the goal of the control
component is to achieve the maximum future reward. In RL,
the reward in a future time is discounted by a factor γ to favor
rewards of the same value that come earlier and avoid infinite
rewards, where 0≤ γ < 1. Therefore the value that represents
the future reward is given by R(t)= rt+γrt+1+ ···+γT−trT ,
where t is the current time step and T is the termination time
step, which is the end of the day in our case.

Since there are multiple data movement actions to choose
from at each state and the different data movement actions lead
to different next states, we get a recursive situation where the
action that should be chosen depends on the states that we end
up in and what actions to choose in that new state. We get the
Q-Learning setting, which defines Q(st,at) to be the value of
the control component taking action at in the state st. Q∗ is
used to represent the best-expected value. That is,

Q∗(st,at)=max
π

Qπ(st,at)

and π is the policy for taking actions under given states. This
makes Q∗(st,at) the optimal state-action value function over
all policies. We can represent the optimal state-action value
function as

Q∗(st,at)=E
[
r+γmax

at+1

Q∗(st+1,at+1) | st,at
]

where st+1 is the state of next time step and at+1 is the
possible action of next time step. In our work, we use neural
networks as a non-linear function approximator to estimate the
optimal state-action value Q∗(st,at).

VI. IMPLEMENTATION OF JIT

We build the JIT migration controller module using a multi-
headed network architecture. Fig. 4 shows the overall scheme
of the module. We input the states into both the proposal com-
ponent which consists of proposal block 1 and proposal block
2, and the control component which consists of control block 1
and control block 2. To help our migration module generalize
better, we augmented the data. We randomly selected a certain
percentage of the data chunks in the storage system, and swap
the request accesses of the selected chunks with a random
neighbouring chunk within a certain range. The percentage
and the neighbouring range are both small numbers since the

Proposal 
block 1 

Proposal 
block 2 

Control 
block 2

Control 
block 1 

Relative
block 

accesses

Input states

… Actions

Fig. 4. The overall network architecture of migration controller module.

storage accesses patterns of the neighbouring chunks can be
similar while this rarely happens to the chunks that are located
far away from each other.

A. Building Proposal Component

One head of the module is the proposal component which
we use to generate data movement proposals for some data
chunks based on the expected frequency of those chunks in the
next JIT window. The idea is by moving data chunks with ex-
pected maximum frequency to higher tiers, JIT minimizes the
average latency of future requests. To do this, we first input the
state to get a compact representation through proposal block
1 and then carry out the opposite process through proposal
block 2 to output a list of expected accesses for all the chunks.
During training, the mean squared error loss of the output is
taken with respect scaled access frequency of the next JIT
window. Based on the relative order of the expected accesses
for each chunk, we obtain the data movement proposals.

We use Convolutional Neural Network (CNN) layers to
build the proposal component. The reason for this is that there
is a locality that CNN can take advantage of. We note The
input of the proposal component is the state array. A part
of the state array is the access frequency number and the
relative order for all the chunks. It is possible that the access
frequencies of the nearby chunks are related. In addition,
the order of the chunks in a sorted frequency list is clearly
correlated with the number of accesses it gets. It is also likely
that the number of accesses may be correlated with the access
timestamp because the workloads may follow a daily pattern.
In short, the values of local neighboring elements in the input
state are correlated. CNN introduces an architectural bias that
can take advantage of these local correlations which often
leads to requiring less training time and data.

B. Building Control Component

The other head of the multi-headed network is the control
component which we use to filter the data movement propos-
als. We define the actions as several different possible sets
of data movements based on the data movement proposals
we obtain from the proposal component. We input the state
to control block 1 and obtain an intermediate representation.
This representation is passed to control block 2 together with
the output from proposal block 1 which is the intermediate
representation of the expected access frequency of each chunk.
Finally, we output the estimated value of each action with the
input state and select the data movements associated with the
maximum value. We use an adaptation of the Deep Q-learning
(DQN) [6] called Double DQN [3] to train our control com-
ponent. The Double DQN combines Double Q-learning [2]
algorithm with deep RL. By using two Q-learning networks,
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one for action selection and one for value function estimation,
the method stabilizes the training process and lessens the
problem of overestimation in the original DQN. In order to
make the valid estimation of Q, we need to be able to explore
a large number of states. As we get some estimations for
the states, we want to discover if those estimations are good.
The transition between these two facets is performed through
what is known as exploration vs. exploitation dilemma [10].
In practice, we use the ε-greedy method to approach this
dilemma, where at the beginning of the training, we focus
on exploration and slowly adjust to more exploitation as we
go through the training. Thus allowing the control component
to find a desirable path through the state space.

The control component observes and reacts to different
states of the storage system and collects the data st,at,rt,st+1

for each time step. The training data itself is a time-dependent
sequence since the action at taken at time t influences the
state and the action for the next time step t+1. This time
correlation breaks the assumption of independent and identi-
cally distributed (iid) data and clearly the trajectory through
a day of the trace is not iid. We apply a method called
experience replay [6] in our training process to decorrelate
the time dependency. The basic idea of experience replay is to
store the data we obtain from exploring the storage system into
the replay memory and use the random sampling of the stored
data to update the parameters of the deep neural network, such
as updating the Q-learning parameters. In addition, when we
update the weights of the network (in Fig. 4), the updates from
the actions output loss to the weights of the proposal block 1
is disabled. This is because the data movement choices should
not influence the number of accesses each chunk gets in the
next time step. That is only the weights of the control block 2
and control block 1 in the multi-headed network are updated.

VII. EXPERIMENTAL SETUP AND RESULTS

In this section, we evaluate our tiering method using two
publicly available traces and analyze the results.

A. Datasets Used for Evaluation

We have used two different datasets for our experiments.
The first one is the one-week long block I/O trace of en-
terprise servers at Microsoft Research Cambridge (MSR) [7]
consisting of three different workloads: User home directories
(usr), Project directories (proj), and Hardware monitoring
(hm). Originally an IO request in an MSR trace file contains
7 tuples. But attributes that are useful for our purposes in an
IO request are - timestamp, request offset, request type (read
or write), and request size.

The second group of datasets is the ten-day long block I/O
traces from a Tencent production Cloud Block Storage (CBS)
system [14]. The CBS trace records the I/O requests issued by
the clients from a forwarding proxy server of the client and
storage server. The trace captures the timestamp, offset, size,
type (read or write), and cloud disk id of each request. This
dataset is collected from thousands of cloud virtual volumes
(virtual disks). We evaluated several dozen of these traces,

and filtered out the traces that showed little variation in the
requested blocks and those that show little locality in the
requests. Of those, we narrowed it down to two virtual disk
ids and used the corresponding traces over the weekdays of
the first week. We call these two workloads TC1 and TC2.

B. Calibration of Storage Tier Model

The simulation model maintains the queues of user requests
(512 Bytes per LBA) and chunk transfers, though the storage
model only needs to keep track of the basic "service time" of
individual requests at each tier. In general, such service time
depends on numerous details of the system, but we found that
it suffices to calibrate it simply by using an a+bx model
where a is the minimum latency for a request, x is the size
of the transfer in LBAs, and b is the size-dependent part. For
HDD, a is dominated by the seek and rotational latency, but for
SSD it includes FTL (flash translation layer) delays, NVMe
protocol latency, latency of internal buses, etc. The Optane
delays would be even more dominated by protocol delays.

Since we do not have the characteristics or measurements
from the actual setups used for generating the MSR or CBS
traces, we calibrated the model by considering the character-
istics of currently available devices. Obviously, the calibration
needs to be done for each system and workload. For our
calibration, the a parameter was 4ms for HDD and 60µs for
SSD. For HDD, we have b=2 µs

LBA for both reads and writes.
For SSD, b=0.5 µs

LBA for reads. The writes are considered as
2X slower effectively. (The actual flash writes are much slower
than that but the write buffer in SSD reduces their effective
latency.) For Optane we use a=0.2µs, b=0.26 µs

LBA for both
reads and write.

C. Experimental Setup

Since each trace has its own quirks, we needed to perform
some simple manipulation on the trace files to have them all in
a uniform format. The timestamp of the CBS traces is recorded
with a crude 1-sec resolution, which often concentrates too
many requests in 1 sec. Therefore, we added a random time
to each request in [0..1] sec range to disperse them, but
maintained their original order from the trace (since the order
is often quite important for storage requests). We randomly
selected Thursday, which is in the middle of the week to assess
our method.

We used Adam optimizer [5] to update weights iteratively
while training the migration controller module using a batch
size of 32. We used ε-greedy to train the control component
to take actions but decreased ε in proportion to the percentage
of training finished. We defined three actions for the control
component. Each action represents a different amount of data
movement selected from the proposal.

D. Experimental Results

The traditional tiering (TT) method collects the frequency
of each chunk from the previous day and uses the LFU
algorithm to perform data migration at midnight. TT places
the most accessed chunks in the higher tiers. We evaluate
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Fig. 5. Training loss (log-scale) and Box/Whisker plots for various MSR and CBS traces

the performance based on the average latency of the test day.
The latency of each I/O request is calculated after the request
has been received from the storage device and considered
completed. We use the timestamp when the request is issued
by the request generator and when the reply comes back to
the request generator to calculate the latency.

Table II shows a comparison between the traditional tiering
and JIT methods. It is clear that the JIT reduces the average
latency for every workload as compared to TT. The amount of
reduction is dependent on the value of learning the short-term
access pattern as opposed to the overall long-term popularity.
For most cases, the reduction is quite significant and even
huge in some cases. For example, the average latency for proj
is decreased by 76%. However, the hm workload appears to be
quite stable and therefore is unlikely to have much difference
between the long-term popularity (exploited by TT) and short-
term popularity (exploited by JIT).

Mechanism Workload
usr proj hm TC1 TC2

TT 0.611ms 7.493ms 1.275ms 0.325ms 0.267ms
JIT 0.472ms 1.746ms 1.231ms 0.076ms 0.169ms

Table II
AVERAGE LATENCY OF TT AND JIT FOR MSR & CBS TRACES

In Fig. 5 we show two things for each of the 5 workloads
(namely MSR usr, proj, hm and CBS TC1, TC2): (a) The
loss for training, and (b) the resulting latency distribution for
tiering on the test data.

The loss functions show that there is no divergence issue
even though augmented the data as described in the previous
section. We expect the results to be similar or better when
using more training data. The latency distribution is shown via
box/whisker plots where the filled boxes show the boundaries
of 25% and 75% latency values, and the rightmost tick gives
the 95% value over all the access latencies. In the proj
workload, we also see a significant decrease in the tail latency,
which has important ramifications for user experience. As
stated above, for some workloads, such as for hm, tiering on
shorter time scales does not help because the workload is quite
stable. Similar characteristics are observed for the CBS traffic
as well. Overall, we expect JIT to work better for workloads
with higher variability, since for those workloads a simple

long-term frequency based tiering does not suffice.
VIII. CONCLUSIONS

In this paper, we present the just-in-time intelligent tiering
mechanism and evaluate its effectiveness using several work-
loads from two publicly available datasets. We introduced a
simulator that is able to capture the essential characteristics
of multi-tier storage systems; from user access to migration
movement. We are able to instrument, test, and record statistics
about different migration policies. JIT makes migration deci-
sions by first providing movement candidates of chunks that
will be accessed soon. Then JIT chooses a subset to migrate
from these candidates based on their long-term benefits. The
primary goal of JIT is to reduce the overall access latency, and
we show that in most cases, it is able to reduce the latency
significantly.
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