A Neighborhood Aware Caching and Interest
Dissemination Scheme for Content Centric
Networks

Amitangshu Pal and Krishna Kant
Computer and Information Sciences, Temple University, Philadelphia, PA 19122
E-mail:{amitangshu.pal, kkant }@temple.edu

Abstract—Content-Centric Networking (CCN) is a promising
framework for the next generation Internet architecture that
exploits ubiquitous in-network caching to minimize content
delivery latency and reduce network traffic. In this paper, we
introduce a neighborhood aware mechanism for content caching,
named Neighborhood Aware Caching and Interest Dissemination
(NACID) that accounts for the popularity of contents and how
close the content copies are in the neighborhood. We have adopted
a Bloom Filter based dissemination of caching information in
the neighborhood so that its overhead remains small. Given
the neighborhood cached contents, the proposed scheme decides
when and how to handle the additional caching of content and its
eviction. Simulation results show that NACID performs substan-
tially better than existing CCN caching policies; it increases the
cache hits by up to ~5 times and decreases the number of hops
required to access the content by up to ~57%. We also study
different heterogeneous cache memory allocation strategies and
show that much simpler homogeneous allocation strategies work
almost as well.

Index Terms—Content centric networks, Caching, Interest
dissemination, Content popularity, Zipf distribution, Bloom filter.

I. INTRODUCTION

The tremendous growth of Internet traffic in the recent past
has led to intensive research into alternate, more scalable
architectures. Based on Cisco’s VNI report [1], the Internet
traffic volume has increased eight times in the last five years.
The annual traffic volume is anticipated to increase by 29%.
Among the Internet traffic, the video traffic itself accounts for
86% of all the IP traffic in 2016 [1], which will continue
to grow due to the growing demands for bandwidth-intensive
services such as high definition Video on Demand (VoD) or
time-shift TV services [2].

Most of this traffic is generated by content retrieval ap-
plications. This compels the Internet designers to shift from
the sender-driven end-to-end communication paradigm to
receiver-driven content retrieval paradigm [3]. The emerging
information-centric networking (ICN) [4] architectures are
based on the observation that unlike the classical Internet
architecture that is based on the addresses of nodes and routing
between these addresses, the new Internet architecture should
instead focus on information availability and demand. That
is, a piece of information should be identified by its own
characteristics rather than where it resides, and its spread in
the network should be controlled by its demand and QoS

requirements (e.g., hard real time, transactional, etc.). These
ideas have been investigated generally under the name content-
centric networking (CCN) [5], [6], [7] and more specifically
under the NSF FIA project called Named data networking
(NDN) [8]. Thus a key concern in ICN/CCN/NDN is where
to host the content most efficiently based on the demands that
may be changing dynamically. This is done by using a publish-
subscribe model to match the demand with availability and
a dynamic caching mechanism to move the hosting of the
content closer to the demand points.

In-network content caching has been studied extensively
in the current IP-based networks also, such as Web service,
P2P, CDN [9], [10], [11]. However, such mechanisms do not
apply directly to CCN caching due to the lack of unique and
universal content name. For example, in Web caching if two
copies of the same content are placed in different servers
of different content providers, different URLs are used to
identify and access the content [3]. This makes the existing
Web caching or CDN caching unsuitable for CCN caching.

Caching of contents in CCN is also well studied [12], [13],
[14], [15]; however, most of these schemes use the notion
of path caching. That is, if the content is located at an origin
node z, and node y requests it, most schemes cache it along the
path, although the decisions about which nodes cache it varies.
For example, the content may be cached at every node in the
path, at the next node down from the last caching place, etc. In
contrast, we propose here a Neighborhood Aware Caching and
Interest Dissemination (NACID) scheme where the caching
decision is made based on whether any copy of the content
exists in the neighborhood of the requesting node, and how far
the requester needs to go to fetch the content. We link this cost
to the predicted demand for the content and its obsolescence
rate. The simplest characterization of the neighborhood size
can be in terms of the number of hops from the requesting
node; however, more sophisticated metrics such as a given
delay limit can also be considered. Different CCN links may
have different costs (capacities, traffic volumes, delay etc.),
thus in NACID the nodes need to consider the routes to their
neighborhood content stores along with their route cost, before
evicting the content.

The main contributions of this paper in enabling neigh-
borhood aware caching are as follows. First, we present an
efficient Bloom Filter based dissemination mechanism in the
neighborhood so that its overhead remains small. We also

Global
Dist.
Center
Regional Regional Regional
Dist. Dist. Dist.
Center Center Center
Local Local Local Local Local Local
Dist. Dist. Dist. Dist. Dist. Dist.
Center Center Center Center Center Center
! i] + ! i
Retailer Retailer Retailer Retailer Retailer Retailer }

Fig. 1. An abstract model of PCDN.

propose a two-level caching architecture in NACID where
the first level makes caching decisions synchronously (i.e.,
driven by the arrivals of the newer contents), whereas the
second level does so asynchronously (i.e., done periodically
as a housekeeping activity). These two operations need to be
done carefully else they could result in thrashing, bandwidth
waste, and additional delays. We develop a two-level (short-
term and long-term) caching scheme to address these issues.
The paper quantifies the advantages of the proposed approach
via extensive simulation studies that show that the NACID
increases the cache-hit ratio up to ~5 times, whereas the hop-
reduction percentage goes down up to ~57%. NACID can be
used for both inside an ISP as well as across the ISPs with
some peering arrangements.

The outline of this paper is as follows. We first discuss the
key motivation behind developing the NACID architecture in
section II. Section III-IV propose the system model, content
popularity distribution and network architecture assumed in
our scheme. Section V introduces the proposed neighborhood
aware caching scheme and describes the operation and inter-
action of the two-level caching mechanism. Section VI shows
the simulation comparison of NACID against other well-
known existing schemes. Section VII studies the performance
of NACID from some real Youtube traces from a campus
network. Relevant literature and discussions are summarized
in section VIII. Finally, we conclude the paper in section IX.

II. MOTIVATION BEHIND NACID

Interestingly the key motivation behind this work stems
from our recent efforts for building an efficient Perishable
Commodity Distribution Networks (PCDN) [16], [17]. We
observe that a significant amount of synergies exist between
the PCDN logistics and the CCN architecture. Fig. 1 shows
a typical PCDN logistics architecture, which also works
as a producer-consumer model similar to CCN. In PCDN
the commodities move from “source” to “destination” end-
points, the former being farms and manufacturing/assembly
plants, and the latter retailers and other large customers
(e.g., restaurants, hospitals), though there is generally no
transportation in the other direction. Commodities flow from
source to destination via a number of intermediate points
which include local, regional, and global distribution centers
as shown in Fig. 1. These nodes can store full or empty
containers, change container contents (by removing, adding,
or exchanging packages), load/unload containers on carriers,
handle damage/misdelivery, etc.

Perishability is a key QoS driver in PCDN. Products often
deteriorate in quality or in value/usefulness as a function of
flow time through the logistics system. The deterioration as
a function of time ¢ can be described by a non-decreasing
function that we henceforth denote as ((¢). In general, ((¢) is
linear for fruits or vegetables and exponential for fish/meat. In
CCN too the value of information declines steadily with the
delay incurred. One significant example of perishable content
is the breaking news stories that are typically updated period-
ically based on the new developments. The older versions get
progressively less useful, and at some point worthless.

In PCDN the popular commodities are stored and ordered in
large quantity compared to the others, which again is identical
to the caching of more popular contents against the rare ones.
Thus proactively storing a popular commodity in logistics is
often beneficial compared to the unpopular ones. In PCDN
a sudden demand at a retailer can be satisfied from some
nearby distribution points or retailers (instead of bringing all
the way from the “source”). This is technically known as
lateral distribution in logistics. CCN has similar characteristics
in that the content can be fetched from some neighboring
cache, rather than bringing from the actual source server.

The above producer-consumer based PCDN model has three
key fundamentals concepts that we want to capture in NACID.
First is the perishability characteristics of Internet contents
which need to be stitched into the network model so that
the users get up-to-date contents upon request. Second is the
notion of dynamic popularity of the contents, and we use it
to model a benefit function of caching (or not) the contents
in CCN routers. Third is to model the lateral transfer from
neighborhood caches, which results in neighborhood aware
caching in CCN context. We next discuss these points in
section III-V.

III. THE SYSTEM MODEL
A. Content Popularity Distribution

In CCN the content popularity is determined by how often
a piece of content is requested. Recent studies [18], [19] show
that the users are attracted by only few contents, while others
are accessed rarely. In fact a significant portion of the contents
are one-timers. Therefore, the content popularity is commonly
modeled with the Zipf distribution function, which states that
the size of the ¢-th largest occurrence of an event is inversely
proportional to some power of its rank. In a Zipf distribution,
out of the population of M contents, the frequency of the i-th
content is given by

L &
fli M) = < = i n

Zj:l F HM,O&
M1

where « is the Zipf exponent and Hy¢ o = > :_; =& the
generalized harmonic number of order «. In literature the
range of « is varied from 0.6 [20] to 2.5 [21].

By taking logarithmic values on both side in equation(1),

we obtain

logf (i, ¢, M) = log (> — alogt ()

H/\/l,a

®o © Kosarak-trace o
o]

Qoo

Number of occurrences
Number of ccurances

—Kosarak
—Retail
4 Q148
I —Nasa
e
=
()
o
] ’—
B
L
[m]
(&)
0
o O 0 002 004 006 008 01
b 0 0.2 0.4 0.6 0.8 1

10° - . 10°
10° 10 10% 10° 104 10° 10° 10" 10
Ordering

(a)

2

Ordering

10* 10 10°

Normalized Ordering

(©)

Fig. 2. Frequency of content accesses versus content ranking for (a) Kosarak (a = 1.99) and (b) Retail (a = 1.55) traces [22]. (c) Cumulative distribution

of content demands vs content ranking for different traces.

which means the distribution function is a linear in a log-
arithmic scale. When o = 0, it corresponds to a uniform
distribution. When « > 1, the frequency of the less popular
contents tend to drop quickly.

To illustrate the effects of Zipf based popularity distribution,
we use two real datasets, named Kosarak and Retail, that
have been widely used in the data-mining literature and follow
power law distribution. Kosarak is a click-stream dataset of
a Hungarian online news portal that has been anonymized,
and consists of transactions, each of which is comprised of
several integer items. Retail is a retail market based data
obtained from a Belgium store. Figs. 2(a)-(b) show the number
of times a content has been accessed versus the ordering of
the content in the trace. Both figures show a roughly linear
plot (in the log-log scale) for frequently accessed items. The
tail behavior is usually different and can be captured more
accurately with more complex distribution functions, but this
may not be necessary.

Fig. 2(c) shows the CDF of occurrences of the top r%
contents in four traces (Kosarak, Retail, Q148, Nasa
obtained from [22]). From this figure we can observe that top
1% of the contents are accessed for about 80% of the time in
case of 0148 traces, whereas varies in between 30-60% for
others. Whereas the top 10% of the contents are accessed more
than 60% of the time in all traces. Thus correctly identifying
the hot contents in CCN is crucial for caching decisions. We
thus model some content popularity prediction schemes in
section IV, which are used in content caching in section V.

B. Content Popularity vs Freshness

The contents served by the Internet are increasingly dy-
namic in that they are frequently updated. For example, news
stories become stale sooner compared to reality shows or
movies since they are constantly updated. Also, different types
of news have different update rates and useful life, e.g., those
concerning a fast moving disaster vs. normal events. The
notion of Content Freshness can be used to capture this aspect
and is crucial in CCN to serve the clients with up to date
information [23]. To incorporate content freshness in NACID,
we consider a few CCN nodes, defined as Repositories (Repo
in short) that are deployed in different regions, with larger
storage compared to the routers. Such nodes act similar

Fig. 3. The proposed CCN architecture.

to the content delivery routers, and are supported in NDN
architecture [8]. These nodes work as content servers in their
neighborhood regions, as shown in Fig. 3.

Such an architecture is again very similar to the PCDN
architecture shown in Fig. 1, where the local, regional and
global distribution centers correspond to the content routers,
Repos and actual server respectively. In such an architec-
ture Repo periodically/occasionally consults with the original
servers to check whether certain contents are stale and/or
expired. Whenever it finds a change in some contents, it
informs its neighboring routers using a Bloom Filter to purge
those contents. Further requests for those contents would then
be directed towards the Repo, which would send fresh and
consistent contents. In this paper, we only consider exploring
caching and content interest dissemination mechanism for
fetching the contents from a Repo to a number of neighboring
content routers, whereas the details of the message passing
in between the Repos and the actual servers for maintaining
fresh contents is beyond the scope of this paper.

IV. CONTENT POPULARITY PREDICTION MODEL

The popularity of a content varies from region to region.
For example, a regional news or sport may be popular within a
region but will be rarely accessed by the users in other regions.
Thus the popularities of programs with regional dialects or
importance greatly vary spatially and temporally. To predict
this dynamic and regional popularity, we first consider a
few well-known time-series prediction schemes as mentioned
below. These prediction models will run at each CCN router
independently to capture the regional variation of content
popularities.

Cache hit

—+-LRU
—& - SMA
EWMA

5 EWMA=.75
- AR (3)

0 1 2 3 4 5
Time (seconds)

(a)

60

Cache Hit

20 -+ -LRU

— o SMA
EWMA(5)

~ = EWMA(.75)

-=-AR(3)

0 1 2 3 4 5
Time (seconds)

()

Fig. 4. Comparison of LRU and other popularity prediction based content caching schemes with (a) cache size = 100, and (b) cache size = 500 for Kosarak

trace.

Content Arrival

Ca T 8 [& T e [& [¢ [& [5 [¢ [& [5]
LRU [B] [B] [B] [B]
HM=2:9 [A [B] (B] [B]
® ® v ® ® v ® ® ®
Prediction [] B] [B] [B] [B] [3B] [B] [B] [B] [B] [B]
el
® ® v ® v ® v v ® v v

Fig. 5. An illustrative example for comparing LRU and popularity prediction
based caching.

Simple moving average model (SMA): Let Y,° denotes
the local demand of content-c (i.e. the number of accesses)
at a router at time ¢. Then the SMA model predicts the
demand for the next time slot as simply the average from
tpe actual demands from the last m slots [24]. That is,
Vo= (Y + Y0+ 4 Y) m

Exponentially weighted moving average model
(EWMA): EWMA uses a simple exponential smoothing for
prediction, i.e. Yfﬂ = oY + (1 — a)YF, where « is the
smoothing constant in between 0 and 1. EWMA is the most
widely used time series prediction model.

Autoregressive (AR) model: An Autoregressive (AR)
model is one of the most popular methods for modeling and
predicting future values of a time series [25]. Given the past
demands of ¢, an AR model of order p is defined as:

P

Ve =Y BV, +e 3)
i=1

where 31,..., 3, are the parameters of the model and ¢ is

a white noise error term. The error terms, ;, are generally

assumed to be Gaussian i.i.d. random variables with zero mean

and constant variance.

We evaluate the effectiveness of prediction based caching
against the least recently used (LRU) based caching using
Kosarak [22]. Since LRU replaces the least recently used
content, it can be thought of as a popularity prediction
mechanism based on the stack distance estimate. Fig. 4(b)-(c)
show the comparison of LRU, SMA, EWMA, and AR (ties
due to identical Y are broken based on the content recency)
with cache size 100 and 500 respectively. The contents are

assumed to arrive at one per second, whereas, each slot spans
1000 seconds. For SMA we assume m = 5 for Fig. 4. For
AR model we assume p and ¢ to be 3. From these figures
we can observe that the above content access prediction based
schemes improve the cache hit by ~10-12% in comparison to
LRU.

Similar improvements are also observed with other well-
known trace files [22], [26]. Such improvement is explained
in Fig. 5, where A and B are two popular contents and C is
relatively less popular. Also assume that a cache can store two
contents at any time. In such situation we can observe that the
LRU strategy performs poorly as compared to a prediction
based scheme that can predict the popular contents (i.e. A
and B) and store them irrespective of their recency. Thus the
popularity prediction based caching scheme experience 6 hits
as opposed to just 2 hits in case of LRU. The success of the
scheme strictly depends on how accurately and quickly it can
distinguish the popular contents A and B as opposed to C.

We can also observe from Fig. 4 that all the prediction
schemes perform almost similar. The reason is that all these
schemes may vary in terms of their prediction accuracy, but
can distinguish the popular contents as opposed to the less
popular contents almost identically. Because of this reason,
the hit ratio is similar for all these schemes. We thus use the
SMA based popularity prediction model for the rest of the pa-
per, for simplicity. Other complicated prediction models (like
EWMA or AR) can also be used, however, we consider SMA
mainly because it is simple, lightweight and can be easily
implemented in CCN routers. Such popularity predictions are
useful for taking effective caching decisions as discussed in
section V.

Now let us analyze the memory overhead for tracking
the demands corresponding to every content in SMA. The
number of total content name prefixes in today’s Internet is
around 100 million [27]; however, there is a quite a bit of
locality in Internet traffic, and every tierl router carries a
very tiny fraction of the possible 100M contents. This cross
section is further narrowed in case of contents: most items
(i.e., videos, movies, news stories, etc.) are only of local,
regional, and country/language specific interest. Furthermore,

Cache Hit

-=TB length = Num. of contents
-=TB length = 10% of num. of contents

10
-=TB length = 2% of num. of contents
-=TB length = 1% of num. of contents
O 4
0 1 2 3 4 5

Time (seconds) % 10°

(a)

Cache Hit

~=TB length = Num. of contents
-=-TB length = 10% of num. of contents
-=TB length = 2% of num. of contents

0 1 2 3 4 5
Time (seconds) «10°

(b)

Fig. 6. Effect of limited TB length on SMA performance with (a) TB-LRU and (b) TB-LFU.

the time zone differences across the prefixes provide further
temporal locality of accesses. However, the most important
characteristic to limit the memory consumption is the highly
skewed (e.g., Zipf like) access pattern. That is, by keeping
only a few percent of the most popular objects, we should
be able to capture most of the repeat accesses. This is easily
accomplished by treating the tracking buffer (TB) as a cache
using any replacement policies.'

Let us assume that TB can store the demands of L contents
for m slots, where L is less than the number of contents,
and m is the length of SMA. For experimentation we discuss
the performance of two replacement policies in TB. First, we
consider a simple LRU policy for replacing the entries, when
the TB is full. Notice that the number of entries in TB will
be much more than that of the cache, and so using LRU for
maintaining TB is not identical to that of caching. We call this
scheme TB-LRU. The second policy is to replace the contents
that has been accessed the least in the last m slots, which we
call “TB-Least Frequently Used” or TB-LFU policy. To ensure
that the newly coming contents are not replaced immediately
after been inserted in TB, we ensure that the contents that are
accessed in the current slot are not replaced before the end of
that slot, i.e. if a content is requested in (¢ — 1,¢), then it will
not be replaced before the end of t. Notice that in TB-LFU
policy, the TB length should be atleast as large as the number
of content accessed during a slot time. Such a requirement is
not needed in the TB-LRU policy.

Fig. 6 shows the performance of these two policies with
different TB lengths on Kosarak dataset. With both policies
the hit ratio is hardly affected till the TB length is 2% of the
total number of contents, i.e. nearly all of the repeated accesses
are captured by using a TB size that is only 2% of the total
number of unique items. In case of TB-LRU policy the cache
hit deteriorates slightly when the TB length becomes 1% of
the number of contents. Notice that we did not show this case
for the TB-LFU policy, because of its requirement of having
TB length more than the number of contents accessed in a
slot time. To ensure this scheme to be beneficial that the TB

I'This TB cache is different from and much smaller than the data cache; it
only tracks the content ID’s.

Incoming
Content

Update STC Broadcast
BF

LTC update
timer fire

Incoming
Interest

Periodic Content Store

weight —(+{ | CORERTIWEIGHH]
update | Yes
Pl Cache Engine
No
Incomin
BF L
Neighbor Base Routing Engine

Neighbor Cost BF
o

Periodic __L| Forwarding Decision | _Forwargd
cost update Interest

Fig. 7. The overall NACID architecture.

length should be much larger than the number of contents a
cache can store, so that the TB list can have a better view
of the content access demands. Note that even when the TB
length is only a small fraction of the number of contents, the
scheme is still better than simple LRU based caching.

It is also worth commenting that the resources available
at any Internet tier must be commensurate with the number
of routing paths or contents handled by it. For example,
suppose that we use 8B for content ID/item, 4B for access
frequency/item, and 8B for pointers or other data structure
elements. Also suppose that we keep history length of at
most 10. This results in 16+40=56B per item. Thus, a tierl
router handling simultaneous 100M items would only need
at most 112MB of memory (assuming 2% most popular
item IDs are cached). This is insignificant for a tierl router
that is likely to have 64GB or more memory. Similarly, a
much smaller regional router handling 1M items and using
5% caching to capture even less frequent items will still
need only 2.8 MB memory. As an example, the YouTube
video traces collected from a gateway router at University of
Massachusetts, Amherst [19] shows only 300K unique items
over a period of two weeks. The authors in [28] have also
mentioned around 500K unique videos over a two-week period
from a leading online video content provider in China. Similar
comments apply to the computing power required.

V. NEIGHBORHOOD AWARE CACHING AND INTEREST
DISSEMINATION IN NACID

We next introduce a neighborhood aware mechanism for
content caching and information dissemination scheme for
CCN. We assume that each CCN router is assigned a unique
ID with a flat or hierarchical structure [29]. We also assume
that the contents are divided into smaller chunks which are
identified by their unique names or IDs. Compared to the pre-
viously studied schemes [12], [13], [14], [15] on path caching,
in NACID the caching decision is made based on (a) where
the content exists in the neighborhood of the requesting node,
and (b) its predicted content demand and its obsolescence
rate. The overall NACID architecture is shown in Fig. 7. The
entire scheme is summarized below, by describing the two key
modules, named Cache Engine and Routing Engine that run
at each router.

A. Cache Engine

The main challenge in enabling the neighborhood

aware caching is the advertisement of the cached
content-chunks, while keeping the overhead
small. To address this issue, we propose a

two-level caching scheme, as shown
in Fig. 8. We assume that the entire
cache/Content store (CS) of a node is |
divided into two levels, the upper level
is the long-term cache (LTC) where the
most useful content-chunks are cached.
The rest is used to reserve the less use-
ful chunks, and is known as short-term
cache (STC). The STC cache is updated
at each arrival of a chunk, to check
whether the chunk is going to be cached
or not. Occasionally the existing cache is reshuffled, where
more useful chunks are transferred to the LTC and others
are placed in the STC. This reshuffling can be done either
periodically or when the the STC is changed significantly.
After such an update, the information regarding the LTC
chunks is broadcast up to a certain number of hops, which
is defined as broadcast range B. As the CCN content names
are much complex and longer than IP addresses, we use Bloom
filter (BF) to encode the presence of a content in a router’s
LTC.

A Bloom filter is a hash-coding method used to represent
a large set and at the same time supports membership queries
on the set. The key difference between Bloom filters and
traditional hash based representations of a set of elements
is that the space required for Bloom filters is considerably
reduced at the cost of permitting a small fraction of errors.
Each content (key) is hashed using k different hash functions
and the resulting “hash positions” are updated to 1. When there
is a membership query for a key (or content), if all k£ hash
positions of the key are set to 1, then a positive membership
query is returned. While the false negative probability is zero,
the false positive probability is a tunable parameter, which
depends on the size of the filter. BF offers an efficient way
to represent the set of cached chunks and takes O(1) time

Long-term cache
(Asynchronous

update) O

Fig. 8.
caching.

Two level

Fig. 9. A typical Bloom Filter.

to check whether a given chunk is within the set. A typical
example of Bloom filter is shown in Fig. 9 where two contents
a1 and ag are inserted in a bloom filter by using three hash
functions (hi, ho and hjz) by setting the corresponding bit
positions to 1. An illustration of a false positive scenario is
also shown in this figure where the presence of content b is
wrongly inferred as the three hash functions map b to the bit
positions that are set to represent the presence of a1 and as.
In typical bloom filters elements can be added to the bloom
filter, but cannot be removed.

The LTC cache remains unchanged throughout the up-
date interval (i.e. the time in between two successive cache
reshuffles). By keeping the LTC chunks unchanged within an
interval, the BF broadcast is limited to one per interval. Note
that the STC elements are not shared in the neighborhood.
Given such a mechanism, it is easy to reactively cache the
incoming chunk if it is not available in the close neighborhood.

When a new chunk arrives at a node, the STC decides which
chunks (if any) should be replaced. The cache reshuffling, done
periodically, chooses the most useful chunks to store in LTC
and broadcast. For this, we define the benefit (w;) of a chunk
by including two factors: (a) cost-demand factor, which is the
product of the predicted access demand Y; and the cost ¢; to
get it from the nearest neighbor, and (b) recency factor, which
is inversely proportional to the time since last access. That is,

v v
max(A,;,) (C > 5) @)
where A; is the difference between the current time and the
time when a chunk was last encountered. The term ¢ ensures
that the second factor cannot be a dominating factor for very
small A;. The simplest form of ¢; can be the number of hops
to the nearest neighbor node; however, more sophisticated cost
metrics such as link capacities, traffic volumes, delay etc. can
also be considered. For our experiments, c; is calculated by the
hop-counts. The intuition behind calculating w; is as follows:
it is beneficial to cache a chunk that has (a) high demand Y,
(b) is cached in a router that is far away (i.e. high ¢;), and (c)
is recently encountered (i.e. low A;). In equation(4), ¢, v and
¢ are hyper-parameters with ¢ > 2, which ensures that the
cost-demand factor dominates while calculating the benefit of
caching a chunk; when this factor is almost identical to some
contents, then the ties are broken by using their recency.
With these, the general caching problem is described as
follows. Assume that y; is the decision variable to check
whether a chunk is going to be cached or not, and s; is the
size of the i-th chunk. Then the problem is to choose certain

w; = CerYy +

chunks from a set of M, that can be accommodated in a cache
size of C, which can be formulated as follows:

M M
Max Zwlyz subject to Zylsz <C, y;€{0,1} (5)
i=1 i=1

The above problem is identical to the 0-1 Knapsack prob-
lem [30] in combinatorial optimization, which is proven to be
NP-hard. We thus propose a greedy heuristic which is similar
to the greedy knapsack solution, as described in Algorithm
1. The scheme first sorts the chunks in decreasing order of
<+ and then caches them sequentially until the cache space is
filled up.

Algorithm 1 Greedy caching

1: INPUT : Cache capacity C, benefits (w;) and sizes (s;) of chunks ¢ =
{1,2,..., M}.
: OUTPUT : Vector y; € {0, 1} Vi € {1,2,..., M}.

: Sort the chunks in decreasing order of ¥4, je %1 > ¥2 > > WM,
Sq S1 S2 -SM

: Define ¢ = min{¢ € {1,..., M} : Z§:1 s; > C},
. y; = | corresponding to the chunks (1, 2, ..., £ — 1) and O otherwise;

B W N

We note the following properties of our greedy algorithm:

Observation 1: If the cache size is much larger than
the maximum chunk size, and max{w;} << Zf\il w;, then
greedy algorithm approaches to the optimal solution.

Proof: The solution of Algorithm 1 and the continuous (or
LP-relax) version of the knapsack problem differs by at most
one element. The 0-1 knapsack problem is upper bounded by
its LP-relaxation version, and Algorithm 1 differs from the LP-
relaxation version by just one element. Thus in the limiting
case of large cache, Algorithm 1 approaches to the optimal
result, provided max{w;} << Zf\il w;.

Observation 2: When all chunks are of the same size, the
greedy algorithm converges to the optimal solution.

In our simulations, we assume that all chunks are of equal
sizes, which is generally assumed in literature [31]. The as-
sumption can be justified as follows: for heterogeneous content
sizes, the contents are split into chunks of identical sizes where
each of them can be considered as individual contents. Such
equal size chunks are used in Dynamic Adaptive Streaming
over HTTP (DASH) protocol which usually splits each video
content into several equal-sized chunks, as reported in [31].

Algorithm 1 is used asynchronously at the time of cache
reshuffling, to keep the most useful chunks to LTC, whereas
others go to STC. The same algorithm is used to reactively
make the decision of caching (or not) the incoming chunks in
STC depending on their benefits.

Time complexity of maintaining the STC in case of
identical content sizes: The contents-chunks are placed in
a MIN-HEAP data structure (depending on their benefits) for
taking the caching decision efficiently. This ensures that in
case of identical content-chunk sizes, this reactive mechanism
just requires a benefit comparison between the newly arrived
chunk and the chunk with least benefit in STC (i.e. at the root
of the HEAP), and thus can be done at the line speed of the
routers. If the newly arrived chunk is cached, the root of the
HEAP is replaced by the new content and MIN-HEAPIFY is
called to maintain the HEAP, which can be done in O (logn)
time.

B. Routing Engine

Another component in Fig. 7 is the Routing Engine that
forwards the Interest packets. The existing CCN mechanisms
forward Interest packets towards the content server through
the shortest path since they are unaware of the cached chunks
in their neighborhood. Since our mechanism is aware of
the caching (only LTC chunks) in the neighborhood via a
Bloom Filter (BF) mechanism, the routing engine forwards
the Interest packets towards the nearest (or least cost) cache
instead. To calculate the cost among their neighbors, the
nodes periodically exchange the updated link cost information
(bandwidth, traffic volume, congestion, delay etc.) in their
neighborhood. However, for simplicity we will only use hop-
count as the cost-metric for our simulations. Each router
maintains the cost information along with the broadcasted BF
from its neighbors in its Neighbor table (or Neighbor base).
Upon arrival of a new BF from any neighbor, this table is
updated corresponding to that neighbor. This table is referred
by the routers to forward the Interest messages towards the
nearest cache. If no neighbor entry is available corresponding
to a chunk, it is forwarded towards the repository.

The overhead of this scheme is that the routers need to store
the bloom filters of all their neighbors in their Neighbor base.
However in section VI-H we show that the additional memory
overhead of this scheme is very limited for practical cache
sizes and thus can be used in a realistic CCN environments.
For further reducing the memory requirements other kinds of
bloom filters (such as compressed bloom filter [32], cuckoo
filter [33] etc.) can also be used, details of which are beyond
the scope of this paper.

One can also argue that the CCN routers can store the hash
functions (like SHA-1, MDS5 etc.) of their cached contents, and
broadcast the hashes of only the entries that have changed. If
the entries do not change too frequently this might be more
efficient, whereas if they change frequently then the Bloom
filter exchanges will be more efficient.

In both schemes, each node needs to store the compressed
representation of the LTCs of all the nodes in its neighborhood.
With hashing, the representation is in form of a table of hashes
of all LTC entries. The size of the hash entry determines the
collision probability. For example with a cache size of 108
chunks and with a 32-bit hash function that spreads the values
fairly evenly, the collision probability of the order of 1073,
This amounts to 4MB space per node. With Bloom filter, the
size determines the false positive probability. As shown in
Table I, with 105 chunks and false positive probability of 1073,
the per node size is only 1.7MB. Thus, Bloom filter is more
efficient from storage perspective; however, unlike the hashing
solution, the entire filter must be transferred to convey the
modifications in the LTC at a neighbor. In order to reduce the
transfer overhead, it is possible to forego broadcast of a BF
to the neighborhood if only a few entries have changed.

C. Putting It Together

With these we next propose the overall procedure of
NACID. If a CCN router is interested in a content-chunk that
is not there in its cache, it first checks whether the chunk

is there in its neighborhood by consulting with the Neighbor
Base. If it is not found in the Neighbor Base, the Interest is
forwarded to the Repo. Otherwise the Interest is forwarded
to the neighboring router with the least cost. The Interest
packet carries the ID of the neighboring router that has the
chunk. Along with the ID, the Interest packet also carries a
setAggregate flag which is set to true by default (we describe
the use of this flag shortly).

Each router receiving an interest should first check whether
the requested chunk is present in its local cache by looking
up the Content Store (CS) table. If there is a hit, the router
forwards a copy of the chunk to the requester along the reverse
path. Otherwise the router forwards the Interest towards the
router/Repo whose ID is mentioned in the Interest packet.

The Pending Interest Table (PIT) is used to record the
ongoing requests. When a router generates an Interest, each
router in the path towards the destination adds an entry in its
PIT. When the response comes back, this table is used for
sending back the requested chunk through the reverse path
towards the sources of the Interests. While forwarding the
chunk back in the reverse path, the CacheEngine of the CCN
routers determine whether to replicate the chunk in the STC
based on the proposed caching strategy. Each Interest has an
associated lifetime; its PIT entry is removed when the lifetime
expires. When multiple Interest packets (with setAggregate =
true) for the same chunk arrive at a CCN router, only the first
Interest packet is forwarded whereas others are suppressed for
reducing the network traffic.

Notice that the effectiveness of
the forwarding mechanism depends
on the BF size as well as its
false positive probability. Due to the
false positive probability, an Interest
packet can be forwarded to a router ¢
that does not have the desired chunk.
In that case router ¢ detects it and
forwards the Interest packet to the
Repo, with the setAggregate flag
set to false. When a router receives
an Interest with setAggregate =
false, it forwards the packet towards
the Repo instead of suppressing it. For example in Fig. 10
assume that R; sends an Interest packet with setAggregate
= true to Rj3 thinking that it stores a particular chunk. This
Interest packet is forwarded by R, any other Interest packets
with setAggregate = true that arrive at Ry are suppressed.
When Rj3 receives the Interest packet, it checks its CS and
realizes that the Interest is wrongly sent to it. It then forwards
the Interest packet towards Repo with setAggregate = false.
Whenever routers like Ro receives such an Interest packet with
setAggregate = false, it forwards it towards Repo instead of
suppressing it.

Notice that NACID requires the information passing across
the content routers, which can be addressed in two ways. First,
NACID can be used freely within the scope of an ISP. This
can be quite useful in itself because a physical region is often
served by one (and at best a few) ISPs, and even when multiple
ISPs are present, they often provide different services, each

Fig. 10. An illustrative ex-
ample.

with their own unique content. Second, when two or more
ISPs provide services that involve overlapping content in the
same area, we can expect peering arrangements between them
as such arrangements help both providers and customers. We
also envision a finer grain resource sharing and access control
in the future so that all ISPs can more effectively deal with
congestion and slash-dot situations.

VI. SIMULATION RESULTS

We analyze our proposed CCN scheme using CCNSIM
[34], which is an application-level simulator for content centric
network based on OMNeT++. We assume a 10x10 grid
topology consisting of 100 nodes. The content store (Repo),
is at a corner of the grid. The content request of a requesting
node is assumed to be Poisson with an arrival rate of one
request/second. To keep the control overhead low, the update
interval is assumed to be periodic with a period of 200 seconds.
We compare our proposed scheme NACID with the following
popular CCN schemes. The default replacement policy of the
following schemes are assumed to be Least Recently Used
(LRU).

LCE: Leave Copy Everywhere, i.e. cache all along the path
from content store to the node with registered interest.

LCD: Leave Copy Down, i.e., bring the content down one
step closer to interest [35].

ProbCache: Cache along the path from Interest to server
probabilistically to accommodate multiple flows using this
path [14].

FixCache: Cache along the path from Interest to server
probabilistically with probability 0.1.

For these above-mentioned schemes, we used the shortest
path routing (SPR) based interest dissemination towards the
repository. We also compare this with two nearest replica
routing (NRR) based forwarding, denoted by NRR’ and NRR”
that are proposed in [36]. NRR’ uses an exploration phase
where a content request is flooded by any node that receives
the request. When a node finds the matching chunk in its
cache, it forwards it towards the requested node. This may
result in multiple chunks in return, and thus stress the network.
NRR” runs in two phases: in the first phase the requesting
node sends a meta-interest packet, indicating that it expects a
binary reply regarding a content’s availability. Based on the
replies of the first phase, the requesting node sends an interest
packet to the nearest node having the available content. NRR”
ensures low traffic load and avoids cache pollution; however, it
introduces delay due to the two phase exploration. In [36] the
authors have shown that the nearest replica routing along with
LCD shows superior performance, thus, we use NRR+LCD as
a comparison benchmark.

We assume that the popularity distribution of the contents
is Zipf with decay parameter «.. Note that & = 0 implies
a uniform distribution, and a larger @ implies a distribution
with shorter tail. Unless explicitly mentioned, the entire cache
space is divided among the STC and LTC, with a ratio of 1:3.
We assume a total content pool of 10* with identical content-
chunks for most of the simulations, whereas larger number
of contents are studied in section VI-G. As we have assumed

=»~NACID —#*—NACID
401 e e 401 | o-Lce
LCD LCD
30 | | ProbCache 30 -ﬁ-ProbCaahe
FixCache FixCache

Cache hit
Cache hit

-
20 /? 20 /
9

=#NACID
=&-LCE
LCD
—&-ProbCache
FixCache

100 150 200

Cache size

(a)

250 300 150

& g 8
= x = D
0" 0 0

Cache size

(b)

200 250 150 200

Cache size

250 300

(©)

Fig. 11. Comparison of cache hit ratios for different caching schemes, with (a) o = 0.5, (b) o = 0.8, (c) a = 1.

5]
o

—#*—NACID
-©-LCE
LCD
—2~ProbCache
FixCache

o
o

S
o

w
(=]

Normalized hop-count
N
o

T S

3 40, 3 40

Q ? ¢

g g

£30 <30

& s

T 20 |[~*NacID T 20 [|*+=NACID

g --LCE £ —©-LCE

z 10 LCD 2 10 LCD

—&ProbCache —&~ProbCache
FixCache FixCache

0 0
100 150 200 250 100 150

Cache size

(a)

Cache size

(b)

200 250 300 150 200

Cache size

(©)

250 300

Fig. 12. Comparison of normalized hop-counts for different caching schemes, with (a) = 0.5, (b) a = 0.8, (¢c) a = 1.

identical content-chunks, the cache sizes are defined by the
number of chunks that the cache can accommodate. We use
a =0.5, 0.8, and 1.0 for the results.

A. Performance comparison with other schemes

For our simulations, the size of the bloom filter is de-
termined as follows. In a BEF, the presence of collision
regions generate positive matches for a membership check
of a content that is actually not present inside the set. A
larger BF yields smaller false positive rate. Let M denote the
number items that may be inserted using the BF. The false
positive probability p is minimized if the length of the BF
is optimally chosen to be m = (—M Inp)/(In2)? [37]. The
corresponding optimal number of hash functions to be used
is equal to k = (mIn2)/M. For our simulations, we choose
the maximum cache size to be 500; with these the values of
m and k are chosen to be ~900 bytes and 10 respectively to
keep p approximately 0.001. Our current implementation of
Bloom filter is borrowed from [38], which uses CRC32-128
bit hash to generate the hash values.

We compare the Cache Hit Percentage and the Normalized
Hop-Count (NHC) for the above schemes. The former repre-
sents the probability that an Interest message finds the chunk
in a cache, and the latter gives the percentage of the network
diameter the Interest must walk before getting to the chunk.

Performance of cache hit percentage: Fig. 11 shows the
cache hit percentage of NACID in comparison to other
schemes, with the variation of cache sizes. From Fig. 11(a)
we can observe that with a = 0.5, NACID improves the cache
hit probability upto ~5 times compared to the other schemes.
With higher « (i.e. @ = 1), this improvement becomes upto

~2.75 times compared to other schemes. This is because for
large o, most of the popular contents are stored in the cache
and at the same time accessed more frequently, which makes
other schemes perform close to NACID. This shows the effect
of caching the chunks based on their overall benefit, rather than
some implicit information or some probabilistic inference.

We can also observe that the hit probability increases by
upto 2.4 times, when the cache size increases from 100 to
300 based on different .. This is obvious because more cache
size accommodates more chunks, which improves the number
of hits. We can also observe that the hit probability almost
doubles when the « increases from 0.5 to 1. This is because
with the increase in «, more popular chunks are fetched more
often, which overall improves the cache hit probability.

Performance of normalized hop-counts: Fig. 12 shows the
comparison of the normalized hop-counts of NACID against
other proposals. With a = 0.5, NACID reduces the number
of hops traversed by ~24%-57% compared to others. Similar
improvements are also evident with higher a. This clearly
shows the improvement of NACID due its neighborhood
awareness. We can also observe that the NHC goes down by
~43% when the cache size is varied from 100 to 300. This
is obvious because of the fact that higher cache size increases
the number of cache hits and effectively improves the number
of hops traversed. With the increase in o from 0.5 to 1, the
NHC reduces by ~33-56% since higher « concentrates most
accesses to fewer chunks.

The results show that the NACID algorithm improves the
cache hit ratio upto 5 times over all other algorithms, and it
does so while also simultaneously reducing the NHC by upto
57%. This establishes the superiority of our algorithm over
previous CCN caching algorithms, with only a small increase

~+-NACID
-©-NRR'
NRR" L

/

150

-#NACID
~©-NRR'
NRR"

L

0
100

IS
S

40

w
S

30

N
1=}

Cache hit
Cache hit

20

10

o

o
200
Cache size

(a)

150 250 300 200

Cache size
(b)

Fig. 13. Comparison of cache hit ratios for NACID, NRR’, NRR”, with (a)
a=05,0b) a=1.

250 300

o
S

=#=NACID
-©-NRR'
NRR"

o
=]

)\e_\e\e—\«

\\,

-*=NACID
-©-NRR'
NRR"

N
S
N
S

w
S

N
S

Normalized hop-count
Normalized hop-count

\Q

200
Cache size

(b)

=)

150 200

Cache size

(a)

250 300 150 250 300

Fig. 14. Comparison of normalized hop-counts for NACID, NRR’, NRR”,
with (a) & = 0.5, (b) o = 1.

in the complexity. Among the other schemes, LCE performs
worse than others because it always cache the contents along
the path from the content store to the source of the interest.

Comparison with NRR’ and NRR”: Fig. 13-14 show the
comparison of NACID with NRR’ and NRR” schemes. From
Fig. 13 we can observe that NACID increases the cache
hit by upto 10 times as compared to NRR’ and more than
twice in case of NRR”, with « 0.5. This is because
NACID not only exploits the advantage of neighborhood aware
interest dissemination, but also takes advantage of caching
the popular chunks by using simple SMA based popularity
prediction along with their neighborhood aware collaborative
benefit calculation. We can also observe that the improvement
between NACID and NRR” decreases when « 1. This
shows that the popularity prediction gives more advantage
with lower «. This is intuitive because with higher «, the
content popularity becomes more skewed, thus, the gain from
the collaborative benefit calculation reduces. Because of these
advantages, NACID reduces the normalized hop-counts by
~22-50% as compared to NRR’ and ~13-38% as compared
to NRR”, with a = 0.5, while the improvement decreases with
higher a.

Fig. 13-14 show an interesting observation, which is the per-
formance penalty of NRR’ due to its request interest flooding
from the requesting node and the multiple cache evictions due
to the return of multiple chunks in response to this flooding.
While comparing in between NRR’ and NRR” we can observe
that with LCD, NRR” improves the cache hit by more than 3
times with a = 0.5. While the performance of NRR” improves
with higher a, NRR’ still shows poor performance. Because
of this reason with o = 1, NRR” improves the cache hit by
upto 7 times as compared to NRR’. This penalty also results
in higher hop-counts for NRR’ as seen from Fig. 14.

10

25
—+—C =100
—e—C =300

N
o

Cache hit

3

Normalized hop-count

-e—=C =300

C =500

o

2 4 6 8

Broadcast Range (hops)

(a)

10 12 4 6 8

Broadcast Range (hops)

(b)

10

Fig. 15. Comparison of (a) cache hit ratios and (b) normalized hop-counts
with broadcast range.

40

@
S

——C =100
——C =300

.

5
0

35

N
o

N oW
=]
n
S

Cache hit

o

Normalized hop-count

—+C =100
-8-C =300
C =500

=)

1000 2000 3000 4000
Bloom Filter Size (Bytes)

(2)

5000 1000 2000 3000 4000

Bloom Filter Size (Bytes)

(W)

5000

Fig. 16. Comparison of (a) cache hit ratios and (b) normalized hop-counts
with different bloom filter sizes.

B. Performance of NACID with different tuning parameters

1) Comparison with different broadcast range: Fig. 15
shows the variation of cache hit ratio and normalized hop-
traversal with different broadcast ranges, when « is assumed
to be 1. From Fig. 15 we can observe that the cache hit ratio
improves by ~35-65%, and the NHC reduces by ~14-43%
when B increases from 2 to 12. This is because with more
broadcast range, the content routers become more informed
about the LTC contents around their neighborhood, which im-
proves the network performance. However, this improvement
comes at the cost of more control overhead. Notice that the
improvement becomes marginal beyond B = 6 hops. Thus most
of the contents are available within 6 hops around a router’s
neighborhood.

2) Comparison with different BF size: The bloom filter size
plays a significant role in NACID performance due to its false
positive effects. Fig. 16 shows the effects of bloom filter size
on the cache hit ratio and NHC, where the « is assumed to be
1. From Fig. 16 we can observe that the hit ratio increases by
~42-82%, whereas the NHC reduces by ~28-50% when the
filter size is increased from 40 to 5120 bytes. This is due to
the false positive effects of the BF especially when the size is
small. Due to the false positive effects, some interest packets
are forwarded to wrong routers which leads to lower cache
hit and higher NHC. However, beyond 640-1280 bytes the
improvement starts saturating, as beyond that the false positive
effects are marginal.

C. Comparison with real datasets:

We next compare NACID with others using several real
datasets including Kosarak and Retail that can be con-
sidered to follow the power law approximately. These datasets

Kosarak Retail Q148 Nasa T10I4D100K| T40110D100K| Chess Connect Mushroom| Pumsb Pumsb_star| Accidents
Count 8019015 | 908576 | 234954 284170| 1010228 3960507 118252 | 2904951 | 186852 3629404 2475947 11500870
Distinct | 41270 16470 11824 2116 870 942 75 129 119 2113 2088 468
items
Min 1 0 0 0 0 0 1 1 1 0 0 1
Max 41270 16469 149464496 | 28474 | 999 999 75 129 119 7116 7116 468
o 1.9979 1.5533 1.1104 2.0735 | 0.9906 0.9751 1.0865 1.7260 1.6361 2.4399 2.3389 3.7787

Fig. 17. Statistical characteristics of the datasets used.

100 |
ElNACID
~ ML.ce
= ELcp
2 50 - [_IProbCache
[&] .
S [|FixCache

(b)

()
E 50 T T T T
3
© 40
g
30 .
% [IProbCache
N 20 [IFixCache
5]
§ 10]
5] .II
<0
0 ~)
\}’\{\e cs{b . b@(‘\\
Q PSR
& (&)
¥

Fig. 18. Comparison of (a) cache hit ratios and (b) normalized hop-counts corresponding to different real datasets.

are publicly available and are widely used in data mining liter-
ature. We use twelve datasets that have diverse characteristics,
as shown in Fig. 17. These are described in the following:

Q148: This dataset is derived from KDD Cup 2000 data,
compliments of Blue Martini.

Nasa: This dataset is derived from the “Field Magnitude”
and “Field Modulus” attributes from the Voyager 2 spacecraft
Hourly Average Interplanetary Magnetic Field Data and the
Voyager 2 Triaxial Fluxgate Magnetometer principal investi-
gator, from NASA.

IBM Almaden dataset: The datasets T10I4D100K and
T40I10D100K are generated using the generator from the
IBM Almaden Quest research group.

UCI/PUMSB datasets: The datasets chess, connect,
mushroom, pumsb, pumsb_star are prepared by Roberto
Bayardo from the UCI datasets and PUMSB. Chess and
Connect are gathered from game state information and are
available from the UCI Machine Learning Repository [22],
[39]. Pumsb and Pumsb_star datasets contain population
and housing related census data.

Accidents: This dataset is donated by Karolien Geurts and
contains anonymized traffic accident data [22], [40].

Although several of these datasets are not obtained in the

11

CCN context (like Mushroom, Accidents etc.), they show
approximately Zipf distribution and thus can be studied as a
representative datasets for content popularity distribution as
seen in Fig. 18.

We divided the contents obtained from these datasets
among individual content routers, and considered them as
their content requests. We assume the cache size to be 100.
Fig. 18 shows the performance of NACID compared to the
other schemes. For Kosarak, Retail, T10I4D100K and
T40I10D100K datasets, NACID improves the cache hit by
~2-3 times, whereas the hop-count is reduced upto 2-3 times.
NACID also shows 22%-57% improvement in terms of cache
hit and ~13%-33% improvement in NHC with 0148 dataset,
compared to the other schemes. For Nasa dataset, the im-
provement of cache hit and NHR are ~15%-32% and ~23%-
33% respectively. The performances are similar for Chess,
Connect and Mushroom datasets. For the other datasets (i.e.
Pumsb, Pumsb_star and Accidents), NACID improves
the cache hit and NHC by ~6%-96% and ~1.5 times respec-
tively.

The hit ratio of Chess, Connect and Mushroom are
much higher compared to the other two datasets, because of
fewer distinct contents in these datasets. For a similar reason,

VI [1E/[VI [CoV [D
Abilene 11 2.5455 0.2052 5
DTelecom 68 10.3824 1.2917 3
Geant 22 3.3636 0.4159 6
Level3 46 11.6522 0.8739 4
NDN Testbed 17 3.7647 0.4150 5
Tiger 22 3.6364 0.1809 5
Tree 127 1.9843 0.5039 12
Grid100 100 3.6 0.1579 18

Fig. 19. Statistical characteristics of the network topologies.

Bl NACID llLceE BLCD [JProbCache [_|FixCache

Cache hit

(a)

ERn~Acio IlLce BllLCD [ProbCache [_FixCache|
© 40 1

Normalized hop-count
n
o o
1
!

(b)

Fig. 20. Comparison of (a) cache hit ratios and (b) normalized hop-counts
corresponding to different network topologies.

the NHR is also small for these datasets. Among the others,
Pumsb_star and Accidents perform significantly better,
mainly because of fewer distinct contents and/or higher a.

D. Comparison with different network topologies

We next show the comparison of NACID with others
for different network topologies. To cover different types of
networks, we consider both sparse (Abilene, Geant, NDN
Testbed, Tiger, Tree) and dense (Dtelecom, Level3) network
topologies. Fig. 19 shows the key characteristics of each graph,
namely, the network size |V|, the average degree |E|/|V], the
coefficient of variation of the node degree C'oV/, and the graph
diameter D.

From Fig. 20 we can observe that NACID improves the
hit ratios by ~20%-92% and decreases the NHC by up to
~31% compared to the other schemes. We can observe that the
improvement is maximum in case of Dtelecom and Level3
topologies because of their higher node degree (i.e. |E|/|V|)
compared to the other network topologies. This is because a
dense network provides NACID higher chances of fetching
the content from the neighborhood caches corresponding to
a particular router. Also in a dense network a neighborhood
aware caching strategy can intelligently place the content-
chunks among the neighborhood caches, so that the chunks
are mostly available in a router’s neighborhood if not in its
local cache.

12

|.I.D.CDBCDMRDLR‘

Cache hit

&
@
N
(@
= [oM Eec [
=2
=}
? 40
Qo
(=]
=
=l
8
= 20
E
[=}
z
0
e
\@(\e <@ oo@ £
© ¥ ¥
foy
(b)

Fig. 21. Comparison of (a) cache hit ratios and (b) normalized hop-counts
in case of heterogeneous caching.

E. Homogeneous Caching vs Heterogeneous Caching

Next we show the effect of NACID in presence of het-
erogeneous cache size of the routers, where we assume that a
total amount of cache memory is distributed among the content
routers. We distribute the cache memory by analyzing the level
of centrality of the routers within a network. As the central
routers of a network serve more content requests, they are
assigned more cache space as explained later on. We consider
the following centrality metrics for this purpose:

Degree centrality (D): Degree centrality of a router is
defined as the number of links incident on that router, or the
node degree of the routers.

Closeness centrality (C): Closeness centrality of a router
is calculated as the sum of the length of the shortest paths
between the router and all other routers in the network. Thus
the more central a router is, the closer it is to all other routers.
Thus closeness centrality of a router x is given by c(z) =
mz, where d(y, x) is the distance between = and y.

Betweenness centrality (BC): Betweenness centrality of
a router is the fraction of all shortest paths in the network
that contain a given router. Routers with high values of
betweenness centrality participate in a large number of shortest
paths. Thus, betweenness centrality of a router x is given
by 9() = > suis Ujjs(f), where o is the total number of
shortest paths from s and ¢, and o4 (x) is the number of those
paths that pass through z.

More cache close to Repo (MR): We also adopt a cache
deployment strategy where the cache sizes of the routers that
are closer to the Repo are more than that of the routers that are
farther away. The intuition is that the routers that are closer to
the Repo serve more requests, and thus putting larger caches
there will be beneficial. We thus devise a metric, named Repo-

2For a large network, if c(x) is very small, we can normalize it by
multiplying this with the number of nodes or network diameter.

—*—C =100
-6-C =300
C =500

Cache hit

Normalized hop-count

=*~C =100
=-C =300
C =500

20 40 60 80
Percentage of cache in LTC

(a)

100 0 20 40 60 80

Percentage of cache in LTC

(b)

100

Fig. 22. Comparison of (a) cache hit ratios and (b) normalized hop-counts
with the percentage of cache in LTC.

closeness of a router = which is given by r(z) = 1/D, where
D, is the shortest distance from router = to the Repo.

Less cache close to Repo (LR): We next consider the
scenario where larger caches are assigned to the routers that
are far away from the Repo. The intuition behind this is that
the interest packets from the far-away routers need to traverse
more hops to reach the Repo, and so they are assigned larger
caches. We thus develop a metric {(z) = D(z) to model the
LR cache distribution.

We assume that the total cache size of the topology is fixed
and is assumed to be Ci.. In case of homogeneous caching
(or identical caching I), we divide the cache equally among the
routers, i.e. C; = Clot / |V|. However, in case of heterogeneous
caching the cache space of router 7 is given by

X
>jev X

where X, is the suitable metric for router 7 depending on
which caching strategy (D, C, BC, MR, LR) is adopted.
Fig. 21 shows the performance of NACID with hetero-
geneous caching schemes. We assume « 1 for this set
of figures, and Cio is assumed to be 100x|V|. From this
figure we can observe that the performance of NACID does
not change significantly with heterogeneous cache distribution.
Only a modest performance gain of <1.15x (in cache hit) is
observed in case of Dtelecom and Level3 compared to its
homogeneous counterpart. Similar findings are also observed
in [41]. This leads to the conclusion that there is no real
incentives of using heterogeneous caching as opposed to
homogeneous caching strategy in case of NACID.

Ci = Ctot (6)

FE. Comparison with the distribution of cache across STC and
LTC

Fig. 22 shows the how the cache hit and NHC change
with different cache distribution across STC and LTC, with
a = 1. From Fig. 22 we can observe that when we increase
the storage in the LTC, the cache hit starts increasing (whereas
the NHC starts decreasing) till 70-90% of the storage is
assigned to LTC, and then starts dropping. This phenomenon
can be explained as follows. When STC:LTC = 100:0, all the
cache storage is assigned to the STC. Thus no contents go
to the LTC, and therefore no LTC cache information sharing
can take place among the neighbors of the content routers.
Because of this reason, the benefits of neighborhood awareness

13

w
a

——C =100

w
S

NN
S o

Cache hit

=

Normalized hop-count

4 6
Num of contents

(a)

8 10

x10°

4
Num of contents

(b)

6 8 10

x10°

Fig. 23. Comparison of (a) cache hit ratios and (b) normalized hop-counts
with different number of contents.

TABLE I
MEMORY OVERHEAD FOR STORING BLOOM FILTER

Cache False posi- | BF size Memory (n = | Memory (n =
size tive 20) 50)
10~3 175.51 KB 3.5 MB 8.7 MB
10° 10-6 351.02 KB 7.02 MB 17.55 MB
10~° 526.52 KB 10.5 MB 26.32 MB
10=3 877.54 KB 17.5 MB 43.87 GB
5%10° 10-6 1.71 MB 342 MB 85.5 MB
1079 2.57 MB 51.4 MB 1285 MB
10~ 1.71 MB 342 MB 85.5 MB
108 10-6 3.43 MB 68.6 MB 171.5 MB
107° 5.14 MB 102.8 MB 256 MB

of NACID becomes ineffective, which hurts the performance.
With the increase in LTC storage, the scheme takes advantage
of the neighborhood awareness, which improves the overall
performance. However, the size of the STC starts shrinking,
thus there is less room for the new-coming contents to be
cached. When STC:LTC = 0:100, no new contents are cached
after the cache is filled up. However, even in this situation the
performance is better than that in case of LTC = 0, because
of its neighborhood awareness.

G. Comparison with different number of Items

Fig. 23 shows the performance of NACID where the number
of items, say NN, varies from 10* to 105. As discussed in
section IV, 10° items is quite adequate to study the perfor-
mance of a regional router. We assume « to be 1 for this
figure. To consider the stressed scenario, we made the lowest
% to as low as 0.01% in Fig. 23. In that case also NACID
achieves a hit ratio of ~8%. From Fig. 23 we can observe
that the performance of NACID deteriorates with the increase
in number of items. With C' = 1000, the hit ratio reduces
from ~45% to ~12%, when N is increased from 10% to 106;
the corresponding NHC also increases by ~3-4x. With the
increase in cache size from 100 to 1000, the hit ratio increases
by up to 2 times, whereas the NHC decreases by up to 3 times.

H. Overhead analysis for using Bloom Filter based content
dissemination

1) Memory overhead: We next estimate the memory over-
head for disseminating and storing the bloom filters of all
the neighbors in a router’s Neighbor base. To consider a
stress situation, we consider a rather small chunk size of
10KB and a rather large cache size of 10 GB. Reference [42]

argues that chunk size of less than 10KB is undesirable
due to high overhead of headers and chunk management.
Similarly, articles [43], [27] have studied the cache size issue
and consider more than 10GB cache unrealistic. This results
in a maximum number of chunks within a cache to be 109,
which we consider as a realistic upper limit of cached contents.
Table I shows the additional memory requirement for storing
the bloom filter in the Neighbor base with different number
of neighbors (assumed to be n) and false positive rates. From
Table I we can observe that even with C' = 10% and n = 50,
the additional memory requirement is 256 MB which is <3%
of the cache memory of 10 GB. This shows that the additional
overhead of storing the bloom filters are relatively small and
thus can be integrated into real CCN environments.

2) Computational overhead: For every incoming request a
router first needs to do a look-up in the local caches (STC
and LTC). This can be implemented by an hash-table. The
requested chunk-id is hashed and the entry at the hash address
is searched for a match. With good hashing and suitable hash
table size, this look-up operation takes (1) amount of time.
When a chunk is cached, its chunk-id is hashed and its cache
address is stored in the hash table. This operation also takes a
constant time. The deletion operation from the hash-table also
takes a constant time.

If the chunk corresponding to a local request is found in
the cache, then it is served. Otherwise the router (say x)
originates an Interest packet. The router needs to do a look-
up in its neighbor’s BF from its Neighbor Base, each at a
constant cost. If the chunk is not found in the Neighbor Base
(based on the BF look-up) then the Interest packet is sent to
the Repo. Otherwise it is sent to the neighboring router (say
y) with the least cost. This entire operation takes O(n) time,
where n is the number of entries the Neighbor Base of z.
The intermediate routers in between z and y (or Repo) check
whether the chunk exists in their local caches or not in O(1)
time. If the chunk is found at y it is served, otherwise it is
sent to the Repo. All these operations take constant time.

When a chunk arrives at a router, it takes the caching
decision/replacement (if any) for STC. This is done using the
Heap mechanism discussed in section V-A. The checking only
takes constant time, but the subsequent heap reorganization
(not on the critical path) takes O (logm) time (where m is
the number of entries in STC). As the STC size will typically
20-25% of the cache size (which is 10° —10° as obtained from
Table I), this operation is pretty fast.

Now let us consider the computation of the benefit (w;
in equation (4)). The popularity predictions of the chunks
are done infrequently (in few minutes to hours) as typically
the popularity of the Internet contents do not change too
frequently. Ideally the recency of the contents (i.e. A;) need
to be updated continuously. However in case of a realistic
implementation, this factor can be updated in an infrequent
fashion (in few minutes). Similarly the reshuffling of the
contents within the LTC and the STC depending on their
benefit functions is also infrequent.

14

VII. RESULTS FROM REAL VIDEO TRACES

We now show the performance of NACID on Youtube
video traces collected from a gateway router of University of
Massachusetts, Amherst [19]. The traces are collected by mon-
itoring the traffic between clients in the campus network and
YouTube servers. Trace-1 was collected for 3 days in the last
week of Spring 2007 semester, and consists of a total of 32367
requests. Trace-2 consists of the requests generated during
the two weeks at the beginning of the Spring 2008 semester,
whereas Trace-3 consists of seven consecutive 24 hours traces
during the Spring 2008 semester. The overall statistics of
these three traces are enlisted in Table II. Fig. 24(a)-(c) shows
the number of times the contents has requested versus their
ordering, which again shows the Zipf distribution with the
exponents equal to 0.3842, 0.5959 and 0.5198 respectively.

With these traces we have considered the 10x 10 grid topol-
ogy, divided the contents from these traces among individual
the routers, and considered them as their content requests.
Fig. 24(d)-(e) show the result of cache hit ratio and NHC of
these three traces with different cache sizes. From these figures
we can observe that NACID achieves a cache hit of ~15% with
C =500 in case of Trace—1, which results in a NHC of 40.
On the other hand larger traces like Trace—-2 and Trace-3
take a cache size of 4000 and 2000 respectively to reach a
cache hit of ~9-10%. This is because these two traces consist
of a significant number of distinct contents, with a content
size of ~303K and ~141K respectively, which leads to a %
ratio of less than 1.5% with the cache size of 4000 and 2000
respectively. Also observe that for Trace-2 and Trace-3,
the cache hit and NHC start saturating after a cache size of
4000. This can be explained from the popularity distribution
of Fig. 24(b)-(c), which shows that the number of accesses
of the contents after the top 4000 are even less than 10, thus
making the cache size even bigger will not result in further
improved performance.

VIII. RELATED WORKS

Caching in General: Cooperative caching has been studied
extensively in different environments such as World wide web,
peer-to-peer system, as well as in the file and storage systems.
Cooperative web caching is explored including hierarchical,
hash-based and directory-based caching schemes in [9]. Cache
management in peer-to-peer storage system has been presented
in [10], that replicates multiple copies of a file to reduce access
latencies. Coordinated caching of multiple clients in a LAN
is presented in [11] to improve the performance of a network
file system.

However such caching schemes run at the end peers and
proxies over an IP layer, whereas in CCN caching is targeted
to be done in every router. At the same time in CCN caching
management needs to be done at line-speed of the routers to
make it universal. Caching in content distribution networks
(CDN) are explored in [44], [45]. CDN is essentially an
overlay infrastructure where caching is done only at the
content distribution routers, which is different from CCN
caching which is universal in nature.

YOUTUBE VIDEO TRACES [19]

TABLE I

Date Duration | Count Distinct items | «
Trace-1 | 05/23/07 — 05/26/07 | 72 hours 32367 23244 0.3842
Trace-2 | 01/29/08 — 02/12/08 | 336 hours | 611968 | 303332 0.5959
Trace-3 | 03/11/08 — 02/18/08 | 168 hours | 243023 | 141177 0.5198
10° 104 108
2] [0
107} o g €107
5 510 i
210! \ 3 2 10
£ . Eqof £
z — z =
10° 10° 10°
10° 10° 10° 102 104 108 10° 102 10°
Ordering Ordering Ordering
(a) () (©
15 E 80 e ——Trace-1
$ —#—Trace-2
= o3 Trace-3
E 10 | o7
=]
8 g 60
O 5 ——Trace-1 =
F/ =#—=Trace-2 E 50
: Trace-3 2

O 1 1 L 1 1
0 1000 2000 3000 4000 5000 6000
Cache size

(@

Fig. 24.
corresponding (d) cache hit and (e) normalized hop counts.

Caching Decision and Forwarding Policy in CCN: Caching
in CCN is also well researched topic, however, in most of
the proposed schemes a content router does not need to know
the cache information in its neighborhood, and the caching
decisions are taken autonomously by the routers. Leave copy
down (LCD) [35], Move copy down (MCD) [35], copy with
some probability [35] and Probabilistic cache [14] falls in this
category. In [12], the authors have argued that the chunks of
a file is correlated or fetched in a sequential manner. They
have proposed a scheme named WAVE, where the routers
exponentially increase in the number of chunks cached for
a file with the increase in the number of requests. In [46] the
authors have proposed a label-based caching where the nodes
cache a specific range of contents (defined as levels), defined
a priori. A popularity based cache consistency mechanism
is designed in [47]. In [48] the authors have discussed the
optimal cache allocation problem in CCN with an objective
of optimally distributing the cache capacity across the CCN
routers under the constraint of total network storage budget.
A number of surveys on content caching is reported in [49],
[50], [51], whereas energy aware caching is studied in [52],
[52].

For the forwarding of interest packets, shortest path routing
towards the repository is typically used. In [53] the authors
have proposed a hierarchical architecture where the consumers

15

40 ‘ ! ! ‘ !
0 1000 2000 3000 4000 5000 6000
Cache size

(e)

(a)-(c)Frequency of content accesses versus content ranking for the Youtube traces obtained from UMass, Amherst dataset [19], along their

are at the lowest level, whereas the publishers are at the
highest level. Upon arrival of a request at any layer, the
request is forwarded randomly on any of the outgoing links
within the same layer up to a certain time-threshold. When
this threshold is exceeded, the request is forwarded to the
next upper level. The nearest replica routing based forwarding
is proposed in [36], [54], however, this requires flooding the
request packets during the exploration phase, which causes
extra traffic, delay, and unnecessary cache evictions. To limit
the effects of flooding, in [55], [56] the authors propose
flooding only for popular contents based on an exponentially
fading probability. In [57] the authors have studied the effects
of scoped-flooding for content discovery in an information-
centric network. Stateful forwarding is proposed in [58] where
the links are ranked to be either green, yellow or red. A link
is considered as green if no delivery failure or congestion
has been acknowledged, yellow when congestion has been
acknowledged, and red when the transmission is unlikely or a
link failure has occurred. Upon the arrival of a request, a node
prefers the green paths over the yellow ones, whereas the red
paths are avoided. In [59] the authors have used an Ephemeral
Forwarding Information Base (EFIB) to keep track of the
direction in which the data packets were temporarily cached
in the recent past; the EFIB opportunistically creates an entry
by a returning data packet so that a matching interest packet

can follow towards the direction, where the corresponding data
has been recently cached.

In contrast, in NACID the CCN routers occasionally forward
Bloom Filter to share their cached contents, so that the routers
can (a) use this information while caching the content-chunks,
and also (b) forward their content interest to their neighboring
caches rather than always forwarding them towards the content
store. This makes NACID unique in that it does not use
network-wide flooding and the neighborhood aware caching
yields lower hop count and higher cache hits.

Cache Replacement Policy in CCN: The most common
cache replacement policy is Least Recently Used (LRU) policy
where the least recently accessed content is replaced with a
newly arriving content when the cache is full. However LRU
captures the freshness of a content, but not its frequency of
accesses. Some variants of LRU are LRU-K [60] and 2Q [61].
Least Frequently Used (LFU) is an alternative of LRU to
capture the access frequency. ARC [62] captures both the
recency and frequency of a cache’s contents by keeping track
of two lists: one keeps track of the recently accessed contents
whereas other one records the frequently accessed contents.

Content Popularity in CCN: Content popularity distribution
is studied extensively in [18], [19]. The studies conclude that
the content popularity in CCN follows heavy-tailed distribu-
tions, which can be modeled as a power-law distribution. They
also observe that a significant portion of the contents are just
one-timers. The effect of short-term and long-term content
popularity is studied in [63], [64]. The value of the scale-
factor of the popularity distributions varies in the literature
from 0.6 [20] to 2.5 [21].

Bloom Filter: The Bloom filter data structure was first
introduced by Burton H. Bloom in 1970 [65]. Since then
Bloom filter has been used in various domains including
Web caching [66], P2P networks [67], packet routing and
forwarding [68], RFID tag identification [69], differential file
access in DBMS systems [70] etc. There are different variants
of Bloom filters that are proposed in the literature, such as
counting Bloom filter [71], compressed Bloom filter [72],
deletable Bloom filter [73], hierarchical Bloom filter [74] etc.
The use of Bloom filter in CCN has been studied in [75], [76],
[771, [78].

IX. CONCLUSIONS

In this paper, we investigated a neighborhood aware
in-network cache management and information dissemina-
tion scheme in order to minimize content fetch latency in
CCN. Three key features of NACID architecture are (a)
the use of repositories for maintaining the content recency,
(b) lightweight content information dissemination by the
use of Bloom filters, and (c) using them for developing a
neighborhood-aware two-level caching and interest forward-
ing scheme. The simulation results show that the NACID,
compared to the existing caching algorithms, significantly
increases hit ratio, and at the same time reduces the number of
hops for fetching the contents. This performance improvement
is consistent across different network topologies, as well as for
different content mining datasets. We also consider the effects

16

of various heterogeneous cache memory allocation strategies
on NACID by using different graph centrality metrics. How-
ever, a thorough simulation comparison suggests that hetero-
geneous caching strategies can only affect the performance
gain marginally and thus are insignificant in practice.

REFERENCES
[1] Cisco, “Cisco visual networking index: forecast and
methodology, 2009-2014,” Cisco, Tech. Rep., 2010. [On-

line]. Available: http://www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/white\ _paper_c11-481360.pdf

S. C. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms
for content distribution networks,” in JEEE INFOCOM, 2010, pp. 1478-
1486.

G. Zhang, Y. Li, and T. Lin, “Caching in information centric networking:
A survey,” Computer Networks, vol. 57, no. 16, pp. 3128-3141, 2013.
G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-
los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of
information-centric networking research,” IEEE Communications Sur-
veys and Tutorials, vol. 16, no. 2, pp. 1024-1049, 2014.

B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A survey of information-centric networking,” IEEE Communications
Magazine, July 2012.

M. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and B. Mathieu, “A
survey of naming and routing in information-centric networks,” IEEE
Communications Magazine, Dec 2012.

J. Choi, J. Han, E. Cho, T. Kwon, and Y. Choi, “A survey on content-
oriented networking for efficient content delivery,” IEEE Communica-
tions Magazine, vol. 49, no. 3, pp. 121-127, 2011.

L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
Computer Communication Review, vol. 44, no. 3, pp. 66-73, 2014.

A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. R. Karlin, and
H. M. Levy, “On the scale and performance of cooperative web proxy
caching,” in ACM SOSP, 1999, pp. 16-31.

A. 1. T. Rowstron and P. Druschel, “Storage management and caching
in past, A large-scale, persistent peer-to-peer storage utility,” in ACM
SOSP, 2001, pp. 188-201.

M. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Patterson, “Co-
operative caching: Using remote client memory to improve file system
performance,” in USENIX (OSDI), 1994, pp. 267-280.

K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “Wave:
Popularity-based and collaborative in-network caching for content-
oriented networks,” in INFOCOM Workshops, 2012, pp. 316-321.

Z. Ming, M. Xu, and D. Wang, “Age-based cooperative caching in
information-centric networks.” in INFOCOM Workshops, 2012, pp. 268—
273.

I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in ACM ICN, 2012, pp. 55-60.

J. M. Wang and B. Bensaou, “Progressive caching in CCN,” in [EEE
GLOBECOM, 2012, pp. 2727-2732.

A. Pal and K. Kant, “Iot-based sensing and communication infrastructure
for the fresh food supply chain,” IEEE Computer, Feb 2018.

, “A food transportation framework for an efficient and worker-
friendly fresh food physical internet,” MDPI Logistics, Dec 2017.

P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characteriza-
tion: A view from the edge,” in IMC, 2007, pp. 15-28.

M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of youtube
network traffic at a campus network - measurements, models, and
implications,” Computer Networks, vol. 53, no. 4, pp. 501-514, 2009.
K. V. Katsaros, G. Xylomenos, and G. C. Polyzos, “Multicache: An
overlay architecture for information-centric networking,” Computer Net-
works, vol. 55, no. 4, pp. 936-947, 2011.

L. Muscariello, G. Carofiglio, and M. Gallo, “Bandwidth and storage
sharing performance in information centric networking,” in ACM ICN,
2011, pp. 26-31.

“Frequent itemset mining dataset repository,” http://fimi.ua.ac.be/data/.
A. K. Pathan and R. Buyya, “A taxonomy and survey of content delivery
networks.”
R. Nau,

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]
[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24] “Forecasting with moving averages,”

https://people.duke.edu/ rnau/Notes_on_forecasting_with_moving_averages—

Robert_Nau.pdf.

[25]

[26]
[27]

(28]

[29]

[30]

[31]
(32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]
[41]

[42]

[43]

[44]
[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

R. Aufrichtig and S. B. Pedersen, “Order estimation and model verifi-
cation in autoregressive modeling of eeg sleep recordings,” in Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society, 1992, pp. 2653-2654.

“Frequent items in streaming data: An experimental evaluation of the
state-of-the-art,” http://disi.unitn.it/ themis/frequentitems/.

D. Perino and M. Varvello, “A reality check for content centric network-
ing,” in ACM ICN, 2011, pp. 44-49.

Y. Sun, S. K. Fayaz, Y. Guo, V. Sekar, Y. Jin, M. A. Kaafar, and S. Uhlig,
“Trace-driven analysis of ICN caching algorithms on video-on-demand
workloads,” in ACM CoNEXT, 2014, pp. 363-376.

J. J. Garcia-Luna-Aceves, “Name-based content routing in information
centric networks using distance information,” in ACM ICN, 2014, pp.
7-16.

M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1990.

S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content
caching,” in IEEE INFOCOM, 2016, pp. 1-9.

M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Transactions
on Networking, vol. 10, no. 5, pp. 604-612, 2002.

B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in ACM CoNEXT, 2014,
pp- 75-88.

R. Chiocchetti, D. Rossi, and G. Rossini, “ccnsim: An highly scalable
CCN simulator,” in /[EEE ICC, 2013, pp. 2309-2314.

N. Laoutaris, H. Che, and 1. Stavrakakis, “The LCD interconnection of
LRU caches and its analysis,” Perform. Eval., vol. 63, no. 7, pp. 609—
634, 2006.

G. Rossini and D. Rossi, “Coupling caching and forwarding: benefits,
analysis, and implementation,” in ACM ICN, 2014, pp. 127-136.

S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of bloom filters for distributed systems,” IEEE Communications Surveys
and Tutorials, vol. 14, no. 1, pp. 131-155, 2012.

www.csee.usf.edu/ christen/tools/bloom?2.c.

D. Burdick, J. Gehrke, J. Flannick, T. Yiu, and M. Calimlim, ‘“Mafia: A
maximal frequent itemset algorithm,” IEEE Transactions on Knowledge
& Data Engineering, vol. 17, no. 11, pp. 1490-1504, 2005.
K. Geurts, “Traffic accidents data
http://fimi.ua.ac.be/data/accidents.pdf.

D. Rossi and G. Rossini, “On sizing CCN content stores by exploiting
topological information,” in IEEE INFOCOM, 2012, pp. 280-285.

G. Rossini, “Design analysis of forwarding strategies for
host and content centric networking,” https://perso.telecom-
paristech.fr/drossi/paper/phd-thesis-giuseppe.pdf, 2014.

S. Arianfar, P. Nikander, and J. Ott, “On content-centric router design
and implications,” in Proceedings of the Re-Architecting the Internet
Workshop, 2010.

K. Park and V. S. Pai, “Scale and performance in the coblitz large-file
distribution service,” in NSDI, 2006.

M. J. Freedman, “Experiences with coralcdn: A five-year operational
view,” in NSDI, 2010, pp. 95-110.

Z. Li and G. Simon, “Time-shifted TV in content centric networks: The
case for cooperative in-network caching,” in /IEEE ICC, 2011, pp. 1-6.
B. Feng, H. Zhou, H. Zhang, J. J. Jiang, and S. Yu, “A popularity-based
cache consistency mechanism for information-centric networking,” in
IEEE GLOBECOM, 2016, pp. 1-6.

Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie, “Optimal cache
allocation for content-centric networking,” in IEEE ICNP, 2013, pp.
1-10.

A. Ioannou and S. Weber, “A survey of caching policies and forwarding
mechanisms in information-centric networking,” IEEE Communications
Surveys and Tutorials, vol. 18, no. 4, pp. 2847-2886, 2016.

I. Abdullahi, A. S. M. Arif, and S. Hassan, “Survey on caching ap-
proaches in information centric networking,” J. Network and Computer
Applications, vol. 56, pp. 48-59, 2015.

I. U. Din, S. Hassan, M. K. Khan, M. Guizani, O. Ghazali, and
A. Habbal, “Caching in information-centric networking: Strategies, chal-
lenges, and future research directions,” IEEE Communications Surveys
Tutorials, vol. 20, no. 2, pp. 1443-1474, 2018.

C. Fang, F. R. Yu, T. Huang, J. Liu, and Y. Liu, “A survey of green
information-centric networking: Research issues and challenges,” IEEE
Communications Surveys and Tutorials, vol. 17, no. 3, pp. 1455-1472,
2015.

G. de Melo Baptista Domingues, E. de Souza e Silva, R. M. M. Le#o,
D. S. Menasché, and D. Towsley, “Enabling opportunistic search and

set,”

17

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

placement in cache networks,” Computer Networks, vol. 119, pp. 17—
34, 2017.

S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. M. Maggs, K. C. Ng, V. Sekar, and S. Shenker, “Less pain, most
of the gain: incrementally deployable ICN,” in ACM SIGCOMM, 2013,
pp. 147-158.

R. Chiocchetti, D. Rossi, G. Rossini, G. Carofiglio, and D. Perino,
“Exploit the known or explore the unknown?: hamlet-like doubts in
ICN,” in ACM ICN, 2012, pp. 7-12.

R. Chiocchetti, D. Perino, G. Carofiglio, D. Rossi, and G. Rossini,
“INFORM: a dynamic interest forwarding mechanism for information
centric networking,” in ACM ICN, 2013, pp. 9-14.

L. Wang, S. Bayhan, J. Ott, J. Kangasharju, and J. Crowcroft, “Under-
standing scoped-flooding for content discovery and caching in content
networks,” IEEE J. Sel. Areas Commun., vol. 36, no. 8, pp. 1887-1900,
2018.

C.Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A
case for stateful forwarding plane,” Computer Communications, vol. 36,
no. 7, pp. 779-791, 2013.

O. Ascigil, V. Sourlas, 1. Psaras, and G. Pavlou, “A native content
discovery mechanism for the information-centric networks,” in ACM
ICN, T. C. Schmidt and J. Seedorf, Eds., 2017, pp. 145-155.

E.J. O’Neil, P. E. O’Neil, and G. Weikum, “The Iru-k page replacement
algorithm for database disk buffering,” SIGMOD Rec., vol. 22, no. 2,
pp- 297-306, 1993.

T. Johnson and D. Shasha, “2q: A low overhead high performance buffer
management replacement algorithm,” in VLDB, 1994, pp. 439-450.

N. Megiddo and D. S. Modha, “Arc: A self-tuning, low overhead
replacement cache,” in FAST, 2003, pp. 115-130.

Y. Borghol, S. Mitra, S. Ardon, N. Carlsson, D. L. Eager, and
A. Mahanti, “Characterizing and modelling popularity of user-generated
videos,” Perform. Eval., vol. 68, no. 11, pp. 1037-1055, 2011.

S. Mitra, M. Agrawal, A. Yadav, N. Carlsson, D. Eager, and A. Mahanti,
“Characterizing web-based video sharing workloads,” ACM Trans. Web,
vol. 5, no. 2, pp. 8:1-8:27, 2011.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422-426, 1970.

L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A
scalable wide-area web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281-293, 2000.

H. Cai, P. Ge, and J. Wang, “Applications of bloom filters in peer-to-peer
systems: Issues and questions,” IEEE NAS, vol. 0, pp. 97-103, 2008.
H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash
table lookup using extended bloom filter: An aid to network processing,”
SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, pp. 181-192, 2005.
Y. Nohara and S. Inoue, “A secure and scalable identification for hash-
based rfid systems using updatable pre-computation,” in ACM WiSec,
2010, pp. 65-74.

L. L. Gremillion, “Designing a bloom filter for differential file access,”
Commun. ACM, vol. 25, no. 9, pp. 600-604, 1982.

K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor, “A linear-time
probabilistic counting algorithm for database applications,” ACM Trans.
Database Syst., vol. 15, no. 2, pp. 208-229, 1990.

M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Trans. Netw.,
vol. 10, no. 5, pp. 604-612, 2002.

C. E. Rothenberg, C. Macapuna, F. Verdi, and M. Magalhaes, “The
deletable bloom filter: a new member of the bloom family,” IEEE
Communications Letters, vol. 14, no. 6, pp. 557-559, 2010.

K. Shanmugasundaram, H. Bronnimann, and N. Memon, “Payload
attribution via hierarchical bloom filters,” in ACM CCS, 2004, pp. 31-41.
W. Quan, C. Xu, J. Guan, H. Zhang, and L. A. Grieco, “Scalable name
lookup with adaptive prefix bloom filter for named data networking,”
IEEE Communications Letters, vol. 18, no. 1, pp. 102-105, 2014.

W. Quan, C. Xu, A. V. Vasilakos, J. Guan, H. Zhang, and L. A. Grieco,
“TB2F: tree-bitmap and bloom-filter for a scalable and efficient name
lookup in content-centric networking,” in IFIP Networking, 2014, pp.
1-9.

C. Tsilopoulos, G. Xylomenos, and Y. Thomas, “Reducing forwarding
state in content-centric networks with semi-stateless forwarding,” in
IEEE INFOCOM, 2014, pp. 2067-2075.

Y. Wang, K. Lee, B. Venkataraman, R. L. Shamanna, I. Rhee, and
S. Yang, “Advertising cached contents in the control plane: Necessity
and feasibility,” in JEEE INFOCOM, 2012, pp. 286-291.

