
QoS aware TCP For Data Center Storage (QTCP)

Joyanta Biswas, Krishna Kant, Amitangshu Pal
Temple University, Philadelphia, PA 19122, USA

Dave Minturn
Intel Corp, Hillsboro, OR 97291

Abstract—Traditional TCP variants ensure fairness by equal
distribution of the network resources amongst different ap-
plications and thus are unable to provide end to end QoS
solution. With the introduction of increasingly speedier storage
technologies that are primarily accessed over the data center
network, there is a need for lightweight and QoS aware transport
protocols. Given the ubiquity of TCP, the purpose of this
paper is to introduce a lossless QoS aware TCP protocol called
QTCP, that can enforce both the throughput and latency related
QoS requirements (though currently not simultaneously). Like
the well-established DCTCP, it leverages the buffer occupancy
triggered Explicit Congestion Notification (ECN) in the switches
to provide loss-free control of TCP transmission window. The
proposed solution can co-exist with DCTCP and ensure RTT
fairness while providing service differentiation. We compare
QTCP against DCTCP and the deadline aware TCP (D2TCP)
proposal and show how it can support better and more flexible
QoS aware treatment to applications. Although the motivation
for designing QTCP comes from emerging high speed storage, it
is not tied to storage in any way.

Index Terms—Congestion control, TCP, Quality of Service,
distributed storage

I. INTRODUCTION AND MOTIVATION

Transmission control protocol (TCP) has long been a main-
stay of Ethernet/IP based networks ubiquitously deployed
in the entire Internet infrastructure. Consequently, numerous
versions of TCP have been invented over the last few decades
and many are currently in use, such as Reno, NewReno, Cubic,
etc. [1] [2]. However, most of these variants are increasingly
problematic within the confines of a data center network be-
cause of high data rates, undesirability of any packet loss, and
the need for service differentiation. Network infrastructures
especially designed for data center such as the Infiniband
already provide the necessary features, including the very
low-latency, hardware supported end to end protocol called
RDMA (remote direct memory access) and QoS (by a switch-
based mapping of service levels to virtual lanes). RDMA
can be regarded as a counterpart of TCP, but achieves far
lower latency due to hardware offload, lean lower layers, and
minimal OS kernel involvement. However, with 100G+ speeds,
Ethernet can be competitive even in high-end data centers, with
TCP again being the most obvious choice for end to end data
transfer. While TCP latency cannot match the native RDMA
latency, RDMA implemented on top of TCP (known as iWarp)
can achieve decent latency when assisted by suitable hardware
offload and user space implementation [3], [4]. Low latency
TCP implementations (including user-space implementations

This research was supported by a grant from Intel Corp.

such as Solarflare [4] can help numerous traditional applica-
tions in enhancing their performance.

Many applications and basic services require quality of
service (QoS) treatment. One important service that has mo-
tivated the work in this paper is the access to remote storage.
Storage has always been accessed remotely regardless of
whether it is distributed across individual servers (as in iSCSI),
concentrated in a Storage Area Network (SAN) tower, or
managed by one or more storage servers. For remote reads,
the storage target is the transmitter and host is the receiver. For
remote writes, the opposite is true. The end-to-end latency is
clearly important for reads; it can also be important for writes
if the write is released only after the target acknowledges it
(regardless of whether the write actually makes it to the disk
or held in a target buffer).

The emerging storage technologies can drive very high
throughputs and provide low latency access. For example,
a single Intel Optane SSD can drive about 25 Gb/sec and
provides an access latency of about 10 µs [5]. Even regular
SSDs (e.g., Samsung Evo370) can drive up to 35 Gb/sec
bandwidth. The emerging persistent memory (PM) devices
(e.g., Intel Optane PM) could support even higher bandwidths
while doing very short (few cacheline) transfers and expect
very low latencies due to the memory access model. Thus
when such devices are accessed remotely over the network,
the network latency becomes an important component of the
overall access latency, particularly when the storage traffic
can overwhelm some link in the path leading to the storage
server. For example, a 4 KB transmission going through a
couple of 100 Gb switches/routers could easily take at least a
few us without any network queuing, and much more if the
network is congested. Thus, network QoS becomes important,
for example, to support a mix consisting of very low latency
PM transfers, low latency 4KB Optane SSD transfers, and
larger transfers to/from regular SSDs.

Although the IP layer supports the well-known DSCP
(differentiated services code point) mechanism for QoS along
a routable path, it has several limitations in the data center
context. First, DSCP was developed for WAN and is based
on packet loss characteristics. In data centers, packet loss is
highly undesirable as it can cause the applications to hang or
severly degrade their performance. Second, DSCP provides a
hop-by-hop control wherein each switch along the path marks
the packets according to the supplied policies. Instead, what
is needed is an end-to-end mechanism that can be managed
from the service endpoints. Third, the data center is not limited

to layer-2 switches, and routinely uses switches with layer-3
(or routing) capabilities. Thus, an Ethernet level QoS is itself
insufficient. Also, while the data center bridging features (e.g.,
PFC – priority flow control, ETS – Enhanced transmission
selection) [6] are well standardized and can be very useful,
they are generally not implemented.

In view of the above, a practical approach is to implement
a QoS aware transport layer that controls end to end data
transfer rate based on the packet delays rather than drops. Data
Center TCP (DCTCP) [7] has been defined to support such
a functionality; however, DCTCP does not support service
differentiation. The only other relevant TCP variant is the
deadline driven TCP (D2TCP) [8] that does provide service
differentiation and will be discussed in section II.

In this paper, we present a QoS aware TCP, henceforth
called QTCP, that like DCTCP and D2TCP, is based on
the loss-free ECN but is intended to support multiple QoS
classes that may specify one of the following two goals under
congestion: (a) Divide the bottleneck link bandwidth in speci-
fied proportions, or (b) Achieve specified end-to-end network
latency objectives for the higher QoS classes. (Obviously, there
must be at least one best-effort class with sufficient bandwidth
that can be squeezed to achieve the latency objectives for
others, and the latency objectives must be loose enough to
be realizable.) Combinations of (a) and (b) are envisioned but
beyond the scope of this paper. We show that QTCP is much
more flexible than D2TCP and can do a much better job of
achieving the specified objectives.

Although the protocol is not tied to storage in any way and
can be useful for many other purposes, the identification of
application classes with respect to the bottleneck bandwidth
subdivision or sensible latency targets could be challenging in
general. In particular, for throughput control, we assume that
the bottleneck bandwidth is either known from historical data
or can be determined through continuous active monitoring.

The rest of the paper is organized as follows. Section II
explores the background of different data center TCP mech-
anisms along with the motivation behind the work. Sec-
tion III discusses our proposed QoS aware window modu-
lation scheme. Analytical modeling of QTCP is explored in
section IV. The evaluation results are covered in Section V.
Section VI summarizes the related works. The paper is con-
cluded in Section VII.

II. TCP FOR DATA CENTER USE

To avoid the highly undesired packet losses in a data center
network, the congestion must be triggered when the queue
length at a switch along the path or at the receiver exceeds
some value K that is substantially less than the actual buffer
size. This feedback can occur through the standard ECN
(explicit congestion notification) mechanism which operates
as follows: The switches mark the congestion encountered
(CE) bit in a packet when a queue length threshold K is
exceeded. When the endpoint receives the packet, it sends the
ECE (ECN-echo) message back to the sender which reduces
its window. From latency perspective also, K needs to be

sufficiently small for a data center environment regardless of
the available buffer size. Also, in order to limit the tail latency,
it is more appropriate for use tail drop (i.e., all packets that
exceed the threshold K) instead of RED (random early drop)
beyond K.

Both Data-center TCP (DCTCP) and Deadline-Aware Dat-
acenter TCP (D2TCP) [8] use an exponentially smoothed
version of the ECN feedback to modulate the congestion
window (cwnd) for reducing the amount of traffic into the
network. The underlying control parameter is the fraction of
acknowledgements in a window that arrive with the ECE bit
set. Consider I competing TCP connections (or flows). Let
fi(n) denote this fraction for ith flow during its nth window.
Then we can obtain an exponentially smoothed version of this
quantity over successive windows, popularly denoted as αi, as
follows:

αi(n) = (1−γ)αi(n−1)+γfi(n−1) (1)

where 0 < γ < 1 is a smoothing constant (independent of the
flow id i).

Like the regular TCP, DCTCP is not designed for any
service differentiation and thus effectively results in equal
division of the available bandwidth amongst the existing flows
during the congestion episodes. As in regular TCP, such a divi-
sion does not require knowing the actual available bandwidth.
In particular, DCTCP reduces the window in proportion to the
latest estimate of αi such that in the limiting case of αi = 1,
the window is halved. That is, the window control follows the
following rule:

Wi(n) =Wi(n−1)
(
1−αi

2

)
if αi > ε (2)

Wi(n) =Wi(n−1)+1, if αi ≤ ε (3)

where ε is a very small positive constant to address the fact
that αi will not become truly zero for a long time after the
congestion has disappeared (i.e., after fi = 0). This is not an
issue in kernel implementations since all arithmetic is forced
to be integer. The DCTCP RFC suggests marking threshold of
K > (RTT×C)/7, where C is the link capacity in packets
per second.

The aggressive reduction of window based on congestion
crossing a fixed threshold controls the latency well and the
congestion proportional window cut achieves a better trade-
off between the congestion and the utilization of the network,
compared to other existing TCP variants like TCP Reno [9]
or Westwood [10]. Note that αi will generally be different for
different flows, with a fatter flow experiencing higher αi and
thereby being subject to a greater reduction in throughput.

Some proposals have been made to use DCTCP in NVME-
TCP protocol as a solution to prevent “incast collapse”1.
Despite all the pros, DCTCP lacks providing differentiated
treatment for different applications, which is very common in
a data center environment. For example, in the presence of
congestion, a high priority flow may suffer more compared

1https://www.snia.org/sites/default/files/ESF/SNIA-NVMe-TCP-Final.pdf

2

to other low priority flows if both of them react to the same
congestion event similarly (halve the corresponding cwnd).

The D2TCP proposal considers deadline of each class (or
flow) while modulating the cwnd and thereby attempts to
provide some level of service differentiation. In particular, for
class i, it computes a ratio di of an estimated actual delay and
the deadline, and skews the window modification by using
αdii instead of αi. In other respects, D2TCP works identical
to DCTCP as shown in Table I. Note that the exponentiation
required in D2TCP is difficult to implement accurately in
the kernel mode because of lack of floating point arithmetic.
Also, a continuous monitoring of the remaining time to the
deadline of an application level transfer is rather cumbersome
to implement in the kernel.

Although D2TCP provides differentiated services to some
extent, it sufferes from some key limitations. First, the notion
of “deadline” in D2TCP is rather simplistically defined; it is
assumed that each flow will queue up all of the bytes it needs
to transfer in one shot, and thus the deadline corresponds to
the amount of time it takes to entirely transmit all of these
bytes. Inherent in this view is the assumption that there are no
overlaps between between successive “flows”, i.e., all the bytes
deposited are fully transmitted before another batch arrives. In
reality, we need to handle applications that generate packets
sporadically based on their incoming requests. The side effect
of the peculiar deadline specification is that there is no notion
of tail latencies, which is what we really would like to control
in high speed remote storage access.

TABLE I
ALGORITHM COMPARISON OF D2TCP AND DCTCP

D2TCP DCTCP
αi = (1−γ)∗αi+γ∗Fi αi = (1−γ)∗αi+γ∗Fi

βi = αdi βi = αdi
where, γ= Smoothing Factor, where, γ= Smoothing Factor,

Fi = ECN Fraction Fi = ECN Fraction
d = Tc(n−1)/D, where D = Deadline

Tc(n) = B/(3
4 ∗Wi(n)) d = 1

where B = Remaining bytes
Wi(n)=Wi(n−1)[1−

βi
2], if βi>0 Wi(n)=Wi(n−1)[1−

βi
2], if βi>0

Wi(n)=Wi(n−1)+1, if βi=0 Wi(n)=Wi(n−1)+1, if βi=0

III. QTCP – A QOS AWARE TCP WINDOW
MODULUATION

We assume a fixed set of I QoS classes, with a persistent
TCP connection per class. We assume that the applications are
classified into one of these classes and thus each application
uses a specific class throughout its lifetime, which is our notion
of a ”flow”. (It is possible that long running applications have
different phases with distinct behavior, and thus the same TCP
connection could potentially require different treatment across
phases, but we do not consider such situations.)

A. QoS Specification

In general, each class has a specified tail latency objective
and a minimum bandwidth objective, e.g., at least 200 Mb/sec
with 90 percentile latency of 100 µs. We consider two regimes
of operation: 1. The bottleneck link has enough bandwidth to

accomodate the average bandwidth demand of all the flows.
Short-term congestion can occur in this case and can seriously
affect the latencies achieved by various classes. Thus the
objective of congestion control is entirely to satisfy the latency
requirements that we assume are specified in terms of tail
latencies.

2. The bottleneck link is lacking capacity to satisfy the
minimum bandwidth of some of the flows. In this case, it
is necessary to ensure that various clases get a predefined
fraction of the bottleneck link capacity. We assume that the
total available bandwidth of the bottleneck link is known here.

We further assume that all tail latencies are specified using
the same percentile value, e.g., 90 percentile. If originally the
latency is specified differently (e.g., 99 percentile), we then
need some way to estimate the corresponding 90 percentile
value. For example, if the mean and variance of the latency
distribution is known, we can use Chebychev inequality to
estimate the tail latency. That is, for a random variable X
with given expected value E[X] and standard deviation σX ,
we have:

Pr[|X−E[X]| ≥ δσX] ≤ 1/δ2 for any δ > 1 (4)

The reason for assuming the same percentile is that it enables
us to control the window size based directly on the ratios of
achieved and target latency values.

The BW based control is a little more complex. The problem
is that the ”desired bandwidths” must be limited if the total
offered traffi exceeds the bottleneck link capacity C. Thus,
there are two situations to consider for each class i:

1) No congestion: Desired BW = Offered load of the class
i

2) Congestion: Desired BW = C∗ Desired BW ratio for
class i

B. Quality Factor and Window Flow Control

We now define a measure called quality factor, and denoted
as Qi for class i. Let Lia and Lit denote, respectively, the
actual and target tail latencies for class i. We express Qi as a
ratio of the two, with actual latency smoothed over time. That
is,

Qi = Lit/L
′
ia where L′ia = (1−γ)Lia+γL′ia, i = 1..K (5)

where γ is the smoothing factor. Qi is a dimensionless number,
ranging from 0 to some maximum value limited by the
admission control. If Qi > 1, class i has a slack (i.e., its
window can be squeezed), and if Qi < 1, then class i has
deficit, and its window needs to be increased. Since we assume
that each class uses a separate TCP connection, the window for
each class is controlled independently based on its Q factor.

A similar Qi can be defined for bandwidth centric control,
i.e.,

Qi = λ′ia/λit where λ′ia = (1−γ)λia+γλ′ia, i = 1..K (6)

where we have reversed the ratio, to keep the same sense for
Qi factor (Qi > 1 means that we have slack, and Qi < 1
means that we have deficit).

3

In addition to the quality factor, we also need to make
use of the congestion feedback returned by the standard ECN
mechanism.

An explicit latency based window control needs to decide
how to measure the latency, how to convey it to the transmitter
(since the latency is only known on the receive side), and how
to use it for window control. There is also the question of how
such a control will play with the ECN mechanism. The latency
should include the transmit side queuing latency and TCP level
network latency (send side processing from TCP down, transit
delay through intermediate switches, propagation delay, and
receive side processing up to TCP). Of these, the network
latency will be identical for all classes unless the switches
have the ability to do class specific markings.

The window modulation for different QTCP flows is done
based on both the value of αi (probability of congestion a.k.a.
percentage of packets are ECN marked) and quality factor
metric Qi. The overall window modulation mechanism for a
single flow i:

Wi(n) =


Wi(n)+1, No ECN
Wi(n)(1− αi

2), αi ≥ 0 and Qi > 1

Wi(n)(1− αi
2)Qi, αi ≥ 0 and Qi ≤ 1

(7)

The above scheme works as follows. When there is no
congestion indication, then congestion window for each flows
would increase by 1 per RTT. In case there is a congestion
indication (marked ECN ACKs) in the previous RTT, then
the window will be updated in proportion to α and Qi. As
discussed earlier, Qi > 1 means, the flows has not satisfied
the QOS requirement yet, so the modulation would only be
based on the α. When Qi ≤ 1, the flow has already met
the QoS demand, so it is okay to back off from the assigned
bandwidth resources to make room for others.

C. QTCP in Presence of Regular TCP

The key aspect of QTCP is an attempt among flows be-
longing to different classes to adjust their windows according
to the stated object (throughput ratio or latency). The data
center network QoS is best supported in an environment where
the bottlenecks can be monitored directly and conveyed to
the relevant applications. A SDN or SDN-like infrastructure
can indeed monitor and provide crucial information to ap-
plications such as the available bandwidth of the bottleneck
link, location of the bottleneck link, the flows passing through
any given switch port, etc. However, making such knowledge
prerequisite to network QoS management is too restrictive.
Therefore, we would like to minimize the nonlocal information
that any class should know. The ideal situation is where each
application determines independently what it needs to know
to achieve its QoS target.

As discussed earlier, currently QTCP only needs to know the
bottleneck bandwidth in order to decide the share of bandwdith
that each class should get, but the location of the bottleneck
link (or links) is not required. We henceforth assume that this
quantity can be determined using the knowledge of network

topology, the workload, and the data gathered by standard tools
such as SNMP and/or explicit latency measurements by send-
ing ICMP (ping) and traceroute messages. Such estimation is
likely to be carried out at a rather low rate (e.g., periodically
or when starting QTCP applications). In general, the QTCP
flows of interest could be a subset of all flows, and thus the
bottleneck bandwidth of interest is the one that includes other
“uncontrolled” flows. Even more generally, one may have a
mixed environment where some flows are QTCP while others
follow an undifferentiated version of TCP such as DCTCP.
In these cases, the overall bandwidth available to QTCP is
the remaining bandwidth and the bottleneck from QTCP’s
perspective could well occur on a link that has a high overall
bandwidth except that a significant portion of it is taken by
non-QTCP flows.

The above low-rate estimation of available bandwidth may
be inadequate in a dynamic environment where new non-
QTCP applications may start or stop at any time. Therefore, we
also consider an alternate mechanism where the QTCP itself
continuously adjusts the bottleneck bandwidth by monitoring
the impact of any interfering traffic. For this, we assume
that the bottleneck bandwidth (λ) is known initially (given or
estimated by other means). Then if an interfering flow alters
this value, each class in QTCP estimates it as shown in Fig. 1.
Here targeti is the QoS requirement of class i when there
is congestion in the network, and actuali is the estimated
throughput till that point. The Qi is the quality factor. Since
Qi quickly converges to close to 1 (as shown later), its
perturbation by more than 5% is considered as a signal of a
new interference or disappearance of the interference. We then
change the target bandwidth by a the amount called “factor”
in Fig. 1 and also adjust the overall bottleneck bandwidth λ.
We then recompute the target bandwidth for each class using
the given ratios. As we shall see later, the mechanism works
quite well.

Wi =Wi(1−α/2)
if (Qi > 1.05) // means there is interference flow

factor = 0.95;
else if (Qi < 0.95) //interference flow left

factor = 1.05;
else factor = 1.0
λ = λ−(1−factor)×targeti
targeti = ratioi×λ; Qi = targeti/actuali
if (Qi < 1) Wi =WiQi

Fig. 1. Estimation of BW Impact of Interfering Flows

Note that TCP-BBR [11] can estimate the bottleneck
bandwidth, by observing the successive RTT variation and then
by finding a optimal point of operation. Instead of limiting the
data rate, BBR inject more packets than the Bandwidth Delay
Product in order to find that optimal point. This allows full
queue build up, which might cause significant performance
degradation to other latency sensitive applications [12]. Our
scheme works, because when any new TCP flow enters, due
to the slow start phrase, changes in throughput (δ) occurs in a
very slow rate. When this δ changes occurs, individual QTCP
flow’s can sense it by the fluctuations in quality factor. Our
proposed scheme should work better if the δ can be estimated,

4

but this is beyond the scope of this paper.

IV. ANALYTIC MODELING OF QTCP

A. A Simple Operational Model

As with other versions of TCP, the essential aspects of
QTCP behavior can be captured via a discrete time model
(DTM) that considers the change in TCP window size from
one round-trip time (RTT) to the next. The behavior may
also be approximated by via fluid flow model (FFM) as in
the analysis of DCTCP in [13]. Note that unlike DCTCP,
where only one flow can be analyzed in isolation, the QTCP
model must analyze a coupled system of equations involving
all classes. Both models have their strengths and weaknesses.
The main issue with DTM is that it considers the behavior
of TCP only at certain discrete points and thus cannot model
the intra-RTT state or window modulation changes. The main
issue with FFM is that it incorrectly assumes infinitesimal
control of state and because of that cannot easily handle the
notion of state during the last RTT. In particular, the FFM
in [13] uses an average value of RTT to refer to the last RTT
cycle. We focus on DTM only in this paper.

For the DTM, we continue to use n as the current “time-
slot” or RTT duration. Consider i = 1..I active TCP connec-
tions, each belonging to a distinct class. Let C denote the
capacity of the bottleneck link used by these classes with
Ci(n) as the share of class i at slot n. Obviously, with∑I
i=1 Ci = C in all cases. Let Ri(n) the round-trip time

(RTT), and q(i)aj (n) the queue length of class j at the bottleneck
egress port of the switch as seen by an arriving class i packet.
Furthermore, let pi(n) denote the event that the switch queue
is already at or beyond the threshold K when a class i packet
arrives, and thus this packet has its CE bit set. Note that in
the current window, the relevant event is from the last window.
That is,

ei(n) = I∑I
j=1 q

(i)
aj (n−1)≥K

(8)

In general, each arriving class i may see a different distribution
of packets in the queue; however, since we assume that the
switch uniformly marks packet of any class that sees a “full”
queue, the dependence of q(i)aj (n) is likely to be very weak, if
any. Therefore, we henceforth assume that such a dependence
does not exist, and denote the queue full event as simply
e(n). However, for a discrete time model, we need not the
individual events but rather the probability of the queue being
full, henceforth denoted as p(n). We can estimate this as
follows:

p(n) =

{
1− K−1

B(n−1) if B(n−1) ≥ K
0 if B(n−1) < K

(9)

where B(n−1) =
∑I
i=1 qai(n−1)).

The overall latency Lai(n) observed by an arriving class i
packet is given by Lai(n) = di+qai(n)/Ci(n) where di is the
baseline delay independent of queuing (including send/receive
processing delays, link propagation delays, switch processing
delays, and transmission time of one (arriving) request). We
assume that the ACKs do not face any significant queuing

delays, and thus Ri(n) = d′i where d′i is the backwards delay.
For simplicity we will assume that d′i = di for all i.

We assume that a suitable admission control is in place so
that the average total offered traffic to the bottleneck link is
always strictly less than the the link bandwidth C. In other
words, we assume that the packets cannot build up at the
transmit nodes indefinitely. Thus, the congestion is a result of
the burstiness in individual class traffic, including the overlaps
in high traffic periods of various classes such that the link
capacity is temporarily exceeded but no packet is ever dropped
either in the switches or at the transmitter. That is, the long
term throughput of the system equals the offered load.

Throughout Ratios: Class i is targeted to get the given
BW ratio of ri relative to class 1 (i.e., r1 = 1). That is, Ci =
C.ri/

∑
i ri and is independent of slot. Since no packets are

lost, the actual throughput can be estimated from the number
of packets transmitted in the last window, i.e., λi(n) =Wi(t−
Ri)/Ri(t−Ri). Therefore, Qi(n) = λi(n)/Ci.

Queuing Latency: We assume that the classes are ordered
according to an importance score, with class 1 being the
most important. Then we require that the latency requirement
applies only to classes i < I ′ < I where I ′ is such that
classes i ∈ [1..I ′] do not occupy more than 50% of the
link BW C. The queuing latency target Lit for these classes
must be chosen sufficiently large to be realizable, particularly
since the switch is assumed to use FCFS scheduling for all
packets.2 For classes i ∈ [I ′+1..I], the target latency may be
left unspecified must be set to a large value representing the
worst possible congestion. The actual congestion Li(n) = d+
qai(t−Ri)/Ci(t−Ri) where Ci(n) = Wi(n)/Ri(n). There-
fore, Qi(n) = Li(n)/Lit.

We could then write the equations for all quantities. In the
following we assume that the bandwidth, window size and
throughput are in the units of packets rather than bytes. Based
on the discussion above, we first restate the basic quantities
below.

Ci(n) =

{
C.ri/

∑
i ri Throughput control

Wi(n−1)
Ri(n−1) Latency Control (10)

Qi(n) =

{
Ci(n)Ri(n−1)
Wi(n−1) Throughput control

di+qai(n−1)/Ci(n−1)
Lit

Latency Control
(11)

αi(n) = αi(n−1)+γ[p(n)−αi(n−1)] (12)

The order of calculation is as follows: We first estimate p(n),
i.e., whether ECN was received in the last window, based on
the queue length in the the previous slot (qai(n−1)). This,
in turn, is used to compute the fraction of BW given to each
flow in current slot, Ci(n), and from there the quality factor
Qi(n). We next update α, which in turn provides all the
parameters required to update the window size Wi(n) and the
RTT (Ri(n)) for the current slot. This, in turn, is then used to
estimate qai(n), the the queue length for the current slot, so

2One could use multi-class open-system queuing formulae [14] to estimate
range of values to use.

5

that the temporal evolution can continue.

Wi(n) =


Wi(n−1)+1 αi(n)≤ε
Wi(n−1)[1− αi(n)

2] αi(n)>ε&Qi(n)>1

Wi(n−1)[1− αi(n)
2]Qi(n) αi(n)>ε&Qi(n)≤1

(13)
Ri(n) = 2di+B(n−1)/C (14)
qai(n) = max[0, qai(n−1)+Wi(n)−Ci(n−1)Ri(n)] (15)

where we have used C(n−1) in the last equation, since the
known drainage rate is C(n−1) during nth slot.

These equations can be solved recursively starting with
some initial conditions. For example, we can assume that
qai(0) = K/I (all flow have equal number of packets at the
switches) or qai(0) = 1 (only one packet in transit at the
switch), and Ci(0) are given as the desired throughput ratio
or inversely proportional to the desired latency. We could then
determine Ri(0). Then, Wi(0) = Ri(0)C/I for all i ∈ 1..I
(all flows have equal window size). We also assume αi(0) = 0,
i.e., no congestion is encountered initially. Note that all classes
must be handled together since we need the summation of
queue lengths for computing p(n) and Ri(n).

One could seek the “steady state” from these equations
by considering the case where the window and RTTs do not
change from slot to slot. However, it is clear from equation
(13) that this system does not have any fixed point.

The equations above assume that there are always enough
packets available at the transmitter so that it can fill whatever
the window size is in each slot. We can extend the model
further by including a packet generation process and keeping
track of untransmitted packets for each class i, henceforth
denoted as Ui(n). The actual window size for class i, hence-
forth denoted as W ′i (n), is then the minimum of the computed
window size Wi(n) (from W ′(n−1) using equation like (13)).
That is,

M = inf
(
∑M′
m=1G

(m)
i)>R(n−1)

(M ′) (16)

Ui(n) = Ui(n−1)−W ′i (n−1)+M−1 (17)
W ′(n) = min[W (n), Ui(n)] (18)

where G
(m)
i denotes the time between mth and (m−1)st

packet during an RTT. This gap is obviously driven by the
packet arrival process which could be bursty.

B. Comparison of Model and Simulation

We validate the analytical modeling of QTCP with the ns3
simulation in Fig. 2 with 3 applications. We set the bottleneck
bandwidth C at 10 Gbps; the applications are injecting traffic
at a rate of 3, 6 and 9 Gbps respectively. We assume the
threshold K to be 140 (K ∼ 0.17Cd, where C = Bottleneck
capacity, d= propagation delay), which is also used in the
DCTCP paper [7].

From Fig. 2 we can observe that the our analytical model
shows the similar behavior in terms of throughput of the indi-
vidual applications, as compared to the ns3 simulations. Thus

Fig. 2. Comparison of throughput between model and simulation

Fig. 3. Variation of quality factor per RTT

validates that that our analytical model closely approximates
the behaviour that is obtained from the simulations.

C. Convergence and stability analysis

We next conduct the convergence and stability analysis of
the developed analytical model in presence of 3 applications.
Fig. 3 shows the variation of Qi with RTT slots, where the
RTT and γ are assumed to be 248µs and 0.0625 respectively.
From this figure we can observe that the Qi’s of all three ap-
plications converge to approximately 1 within 100 RTT slots.
Because of the target throughput based window modulation,
the actual throughput of the applications reaches close to the
target throughput, which makes the quality factors close to
unity.

Fig. 4 shows the effect of different RTT values on the
convergence time, where γ is assumed to be 0.0625. As
expected the convergence time increases with the increase in
RTT values. In a data center environment, the RTT is relatively

6

small (∼ 150−200 µs) [15]; thus, the convergence time will
be fairly quick. Fig. 4 also demonstrates that the quality factor
of the applications will converge to 1.

The variation of the quality factor with different smoothing
constants γ is depicted in Fig. 5 with RTT kept at 220 µs. We
can observe that increasing γ results in quicker convergence
due to aggressive window management. We don’t set γ value
too high (∼ 1.0), as under burst traffic situation there will be
huge fluctuation in the congestion window (variance in both
RTT and quality factor), which would cause response jitters
and as a result performance degradation.

Fig. 4. QTCP convergence with different RTT

Fig. 5. QTCP convergence with different γ

V. PERFORMANCE EVALUATION

We comprehensively evaluate the QTCP mechanism using
the popular ns3 network simulation package. For this, we
started with the detailed DCTCP implementation in ns3 (which
closely follows the RFC 8259) and implemented the proposed
quality aware window modulation mechanism. Our simulation
environment consists of 4 servers and 2 switches as shown in

Fig. 6. Simulation setup; all links are connected through 10 Gbps port

Fig. 6. All the links are of 10 Gbps. These switches have the
ECN capability, threshold K set as 140.

Fig. 7. Comparison of bandwidth sharing between QTCP and DCTCP

A. Comparison with DCTCP Throughput

Fig. 7 shows the comparison between QTCP and DCTCP
in presence of 3 applications carrying load of 3, 6, and 9 Gbps
respectively; thus the accumulated offered load (i.e. 18 Gbps)
exceeds the bottleneck link capacity of 10 Gbps. The ratio of
offered load is 1: 2: 3. In case of DCTCP, we can observe equal
sharing of the bandwidth between 3 applications in Fig. 7(b),
and the carried throughput ratio is 1 : 1.1 :1.1. In case of
QTCP, the carried throughput ratio is almost exactly equal to
that of the target ratio. Thus QTCP can achieve the desired
QoS objective of allocating the bottleneck link bandwidth in
the desired proportions to different classes. Also notice that,
the overall throughput in case of QTCP is almost equal to
DCTCP (9.63 Gbps compared to 9.57 Gbps in DCTCP).

B. RTT fairness Comparison

We define RTT fairness as the extent to which we can
achieve the target throughput ratios, when the RTT of different
applications flows are different. Fig. 8 shows the result of
bandwidth sharing between classes with different RTTs in
case of DCTCP. The average RTT of high QoS Application
(9 Gbps) is approximately 1800 µs, whereas the low QoS
applications (i.e. 3 Gbps and 6 Gbps) have a RTT of 350 µs 3.
Although the conventional goal of RTT fairness is to equalize

3We simulate different RTTs by changing the number of hops in ns3

7

the bandwidth sharing when different flows experience differ-
ent RTT, DCTCP shows bias against flows with longer RTT,
as flows with shorter RTTs grab bandwidth more quickly.

Fig. 8. RTT Fairness in DCTCP and QTCP

Fig. 8 also shows the result of QTCP using the same
topology set up and the workload. The bandwidth distribution
ratio is close to the target throughput ratio in case of QTCP,
though it requires some time to stabilize. Also notice that,
QTCP offers the same overall throughput as DCTCP (9.6
Gbps). In QTCP, although the flows with shorter RTTs grab
window more quickly, the quality factor insists the low QoS
flows to make room for the high QoS flows, regardless of the
RTT.

C. DCTCP friendliness

Since not all flows in a data center may use QTCP, it is
important to study what happens if QTCP competes against
DCTCP. For this, we introduce one DCTCP flow that coexists
with our QTCP flows and verify whether the committed ratio
amongst QTCP flows persists. Fig. 9(a) shows that the QTCP
flows maintain their respective ratios even in the presence of
DCTCP flows. When the DCTCP flow leaves (after about
200 of millisecond of simulation time), the QTCP flows
manage to grab the bandwidth resources according to the
QoS specified ratio (1: 2: 3). In Fig. 9(b) we simulate the
scenario where the DCTCP flow enters and leaves during the
simulation; in this scenario also we observe that QTCP adjusts
the remaining bandwidth among the active flows. Another
solution to ensure the DCTCP friendliness could be to reserve
the bandwidth explicitly for the interfering flows as suggested
in [16]. However, this will result in network under-utilization
when there is no interfering DCTCP flow.

D. Latency Comparison with DCTCP and D2TCP

We now consider the case of latency sensitive traffic, where
the QoS is defined in terms of target latency. For the experi-
ments, we categorized applications into four classes; three of
four classes have latency requirements of 5366, 6604, 7832

Fig. 9. Illustration of DCTCP friendliness of QTCP

Fig. 10. Comparison of QTCP, DCTCP and D2TCP

µs respectively, whereas class four has no QoS requirements.
The mean transfer size we choose is 2MB.

Fig. 10 shows the comparison between QTCP, DCTCP and
D2TCP for latency sensitive applications. We simulate both
the normal and stress situation to show the effectiveness of
our scheme. Fig. 10(a) depicts the normal situation where the
high priority flows (i.e. applications 1 and 2) generate packets
at a frequency lower than that of others; in our simulations
their overall generated traffic is 10% and 20% respectively. In
case of QTCP, almost all the applications are able to meet their
target latency, whereas in DCTCP ∼5-8% packets miss their
deadlines. In 10(b) we simulate a more challenging situation,
where each class contributes to 25% of the overall load. As
compared to DCTCP, in case of QTCP the fraction of traffic
with missed target latency reduces from ∼30-65% to ∼15-
18%. Notice that in Fig. 10, we do not report the latency
statistics for application 4, as it is assumed to be the assured
class with no QoS requirement.

Fig. 10 also compares the performance of QTCP with
D2TCP. In the normal scenario, D2TCP does not miss any

8

deadlines. However, in stress situation QTCP ensures lesser
deadline misses. As compared to D2TCP, QTCP reduces the
percentage of missed deadlines from ∼35% to ∼18% for ap-
plication 1, whereas for the other applications the performance
of both the schemes are almost identical.

Fig. 11. Illustration of the adaptive nature of QTCP; in both scenarios the
system transitions from congestion scenario to congestion free scenario.

Fig. 11 confirms that QTCP can adapt to the network load,
as expected. In Fig. 11(top) the offered load is initially 3, 6
and 9 Gbps respectively for the three classes. After a while,
all offered loads are halved (i.e., 1.5, 3.0 and 4.5 Gbps re-
spectively), so that the overall load becomes less than the link
capacity. The figure shows how QTCP adapts smoothly from
high congestion scenario to congestion-free scenario, while
maintaining the throughput ratios approximately 1:2:3 among
the applications. Fig. 11(down) shows the similar behaviour
with initial loads of 1.75, 3.5 and 7 Gbps respectively.

E. Impact of Qi update interval

In the QTCP analytic model, we assumed that the Qi
is updated in every RTT. But such a fine grained control
affects the stability of different flows. In Fig. 12 we show
the impact of different update intervals on the QTCP carried
throughput via simulation. We use the same topology used to
validate RTT Fairness. It is clear that the convergence time
for different flows are almost similar for different intervals,
approximately 2500 milliseconds. However, the fluctuations
around the average value show an interesting behavior. When
the update is done every RTT, the fluctuations are high,
but almost disappear if updates are done every 10 RTT.
Further increasing the update interval actually increases the
fluctuations, but they are much more consistent than for the 1
RTT case. The reason for this behavior is that a large update
interval results in delayed action which allows the window
and hence the throughput to swing significantly before it is
controlled. The eventual control in this case overcompensates
thereby causing oscillations. Based on these observations, we
have chosen an update interval of 10 RTTs for much of our
experiments.

Fig. 12. Carried throughput over time for different Qi update intervals

F. Class Based Bandwidth Distribution

We next consider a scenario where there are 3 classes
of traffic, each of them consisting of 5 applications; each
application in the same class is treated equally. Here the
target throughput of these 3 classes are assumed to have a
ratio of 1:2:3. Fig. 13(a) shows the carried throughput of
the first application of each classes. Fig. 13(b) shows the
collective carried throughput of the applications in these 3
classes, which also demonstrates that the throughput ratio
follows the expected target ratios.

Fig. 13. Bandwidth distribution of 3 classes of traffic, each consisting of 5
applications

VI. RELATED WORK

Although the main goal of conventional TCP is fairness
(equal sharing of bottleneck bandwidth) amongst different
flows, some variants address the differentiated treatment. Dif-
ferentiated treatment in Transport layer can be classified into
two categories: credit based control, and window modulation

9

based control. In this section, we summarize some of most
relevant works in both categories.

Credit Based Control: Expresspass [17], Reflex [18]
are credit based congestion control, which offer differentiated
admission control by generating tokens in proportion to the
target requirement. The transmitter, receiver, and switches
coordinate to control the credit packets (tokens) per flow basis,
which essentially determines the available bandwidth for data
packets in the reverse direction. However, credit based solution
requires changes in the protocol and specialized hardware to
support token exchange operations. In [19]–[21] the authors
have focused on QoS aware flow admission control; however,
these studies are not in the TCP context.

Window Modulation Based Control: Reference [22] is
based on the loss based TCP variant CUBIC [2], and ensures
low latency for different cellular applications. Their goal is to
emulate the AQM behavior at the server end. They estimate
network status by observing the variance in RTT (due to packet
drops), and modulate the window by comparing the target
against the actual RTT. In our case the RTT variation is not
significant due to the high bandwidth links, and no packets
are actually dropped. So this scheme is not applicable to us.
In the context of data center TCP environment, Homa [23],
L2DCT [24], D2TCP [8], PDQ [25], D3 [26] consider QoS in
terms of individual flow completion time (i.e. deadline). Homa
addresses head-of-the-line (HoL) blocking issue posed by TCP
streams. They leverage in-network queue priority to provide
low latency QoS to the small messages (99 percentile latency
of 10 µs). L2DCT and D2TCP modulate TCP congestion
window for different flows based on the QoS parameter
provided. One of the key issue with these schemes is that
the administrators need to have prior knowledge about the
network delay and RTT in order to set the QoS parameters,
whereas in case of QTCP we just need to specify the relative
bandwidth ratio of different flows. PDQ proposes distributed
scheduling algorithm, where the switches coordinate among
themselves to schedule the high priority flow earlier (i.e.
flow with critical deadline). It requires specialized switches
and extensions to the protocol header to convey the QoS
hints. D3 is another deadline-aware TCP variant, however, D3

[27] requires specialized switches and is not feasible for a
ubiquitous solution. D3 also requires centralized control, so
scalability might get affected badly by the communication
overhead.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we develop a lossless, QoS aware TCP for data
center storage, that offers fairness by distributing the network
bandwidth to different applications according to the relative
QoS requirements. QTCP can be implemented in ECN-capable
switches and does not need any specialized hardware. Using
comprehensive simulations, we have shown that QTCP ensures
RTT fairness, can co-exist with DCTCP, and supports better
differentiated treatment among the applications as compared to
DCTCP and D2TCP mechanisms. In the future we would like
to implement QTCP in the Linux kernel and test its efficacy

with real servers and data center switches supporting ECN.
We will also explore various combinations of throughput and
latency related QoS requirements such as mixture of classes
with both types of requirements or a latency requirement along
with a minimum committed rate requirement.

REFERENCES

[1] N. Parvez, A. Mahanti, and C. Williamson, “An analytic through-
put model for tcp newreno,” IEEE/ACM Transactions on Networking,
vol. 18, no. 2, pp. 448–461, 2010.

[2] S. Ha, I. Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed tcp
variant,” p. 64–74, 2008.

[3] I. Cerrato, M. Annarumma, and F. Risso, “Supporting fine-grained net-
work functions through intel dpdk,” in European Workshop on Software
Defined Networks, 2014, pp. 1–6.

[4] D. Wisniewski, “Solar flair: An open-road challenge,” IEEE Potentials,
vol. 29, no. 1, pp. 6–9, 2010.

[5] S. Zheng, M. Hoseinzadeh, and S. Swanson, “Ziggurat: A tiered file
system for non-volatile main memories and disks,” in USENIX FAST,
2019.

[6] M. Hagen, “Data center bridging tutorial,” University of New Hamp-
shire—InterOperability Laboratory, pp. 1–3, 2009.

[7] M. Alizadeh et al., “Data center tcp (dctcp),” in ACM SIGCOMM, 2010.
[8] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter

tcp (d2tcp),” in ACM SIGCOMM, 2012.
[9] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling tcp reno

performance: a simple model and its empirical validation,” IEEE/ACM
Transactions on Networking, pp. 133–145, 2000.

[10] M. Gerla et al., “Tcp westwood: congestion window control using
bandwidth estimation,” in IEEE GLOBECOM, 2001, pp. 1698–1702.

[11] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“Bbr: Congestion-based congestion control,” ACM Queue, vol. 14, pp.
20–53, 2016.

[12] Y. Cao, A. Jain, K. Sharma, A. Balasubramanian, and A. Gandhi, “When
to use and when not to use bbr: An empirical analysis and evaluation
study,” in ACM IMC, 2019.

[13] M. Alizadeh, A. Javanmard, and B. Prabhakar, “Analysis of dctcp:
Stability, convergence, and fairness,” in ACM SIGMETRICS, 2011, pp.
73—-84.

[14] K. Kant, Introduction to computer system performance evaluation.
McGraw-Hill, 1992.

[15] G. Zeng et al., “Combining ecn and rtt for datacenter transport,” in
APNet, 2017.

[16] C. Guo et al., “Rdma over commodity ethernet at scale,” in ACM
SIGCOMM, 2016.

[17] I. Cho, D. Han, and K. Jang, “Expresspass: End-to-end credit-based
congestion control for datacenters,” ArXiv, 2016.

[18] A. Klimovic, H. Litz, and C. Kozyrakis, “Reflex: Remote flash ≈ local
flash,” SIGARCH Comput. Archit. News, p. 345–359, 2017.

[19] T. Zhu, D. S. Berger, and M. Harchol-Balter, “Snc-meister: Admitting
more tenants with tail latency slos,” in SoCC, 2016.

[20] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R.
Ganger, “Prioritymeister: Tail latency qos for shared networked storage,”
in SoCC, 2014.

[21] E. Thereska et al., “Ioflow: A software-defined storage architecture,” in
ACM SOSP, 2013.

[22] S. Abbasloo, Y. Xu, and H. J. Chao, “C2tcp: A flexible cellular tcp to
meet stringent delay requirements,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 4, pp. 918–932, 2019.

[23] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-
driven low-latency transport protocol using network priorities,” in ACM
SIGCOMM, 2018.

[24] A. Munir et al., “Minimizing flow completion times in data centers,” in
IEEE INFOCOM, 2013.

[25] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly with
preemptive scheduling,” in ACM SIGCOMM, 2012.

[26] C. Wilson, H. Ballani, T. Karagiannis, and A. I. T. Rowstron, “Better
never than late: meeting deadlines in datacenter networks,” in ACM
SIGCOMM, 2011, pp. 50–61.

[27] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” in ACM SIG-
COMM, 2011.

10

