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The sustainability concerns of Information Technology (IT) go well beyond energy efficient computing and

require techniques for minimizing environmental impact of IT infrastructure over its entire life-cycle. Tra-

ditionally, IT infrastructure is overdesigned at all levels from chips to entire data centers and ecosystem;

the paradigm explored in this paper is to replace overdesign with rightsizing coupled with smarter control,

henceforth referred to as energy adaptive computing or EAC. The paper lays out the challenges of EAC in

various environments in terms of the adaptation of the workload and the infrastructure to cope with energy

and cooling deficiencies. The paper then focuses on implementing EAC in a data center environment, and

addresses the problem of simultaneous energy demand and energy supply regulation at multiple levels from

servers to the entire data center. The proposed control scheme adapts the assignments of tasks to servers in

a way that can cope with the varying energy limitations. The paper also presents some experimental results

to show how the scheme can continue to meet quality of service (QoS) requirements of tasks under energy

limitations.
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1. INTRODUCTION

Traditionally, computing has emphasized primarily on the performance of both hard-
ware and software. Lately power/thermal issues of computing equipment have forced
a consideration of these aspects on par with performance. Power/thermal issues arise
at all levels from transistors up to entire ecosystems that involve data centers, clients
and the intervening network. At the architectural level, the increasing speeds, smaller
feature sizes, and exploding wire widths (and hence resistance) all conspire to make
power/thermal issues the main architectural hurdle in sustaining Moore’s law. At
higher levels, the smaller form factors and more difficult cooling aggravate the prob-
lem further. Although power/thermal management is an active area of research,
power/thermal issues are still largely approached in the form of opportunistic meth-
ods to reduce power consumption or stay within the thermal profile while minimizing
any performance impact [B.Heller et al. 2010; Gurumurthi et al. 2003]. Much of this
research is focused on reducing the direct energy usage of the data center, whereas
from an environment impact perspective one needs to consider the entire life–cycle
of energy consumption - that is, the energy consumption in the manufacture, distri-
bution, installation, operation and disposal of the entire data center infrastructure
including IT assets, power distribution equipment, and cooling infrastructure [Chang
et al. 2010].

With the widespread and deepening power/thermal issues, the systems are literally
becoming power and thermal limited, and a new perspective on computing is required.
Looking at energy consumption from this larger perspective entails not only low power
consumption during operation but also leaner designs and operation using renewable
energy as far as possible. Thus, the fundamental paradigm that we consider is to re-
place the traditional overdesign at all levels with rightsizing coupled with smart con-
trol in order to address the inevitable lack of capacity that may arise occasionally. In
general, such lack of capacity may apply to any resource, however, we only consider
its manifestation in terms of energy/power constraints. Note that power constraints

Special Issue on Sustainable and Green Computing Systems, ACM Journal on Emerging Technologies in Computing Systems, Pub. date: April 2012.



A:2 K.Kant, M.Murugan et al.

could relate to both real constraints in the power availability as well as the inability
to consume full power due to cooling/thermal limitations. Power consumption limita-
tion indirectly relates to capacity limitation of other resources as well, particularly the
dominant ones such as CPU, memory, and secondary storage devices. We call this as en-
ergy adaptive computing or EAC. 1 The main point of EAC is to consider energy related
constraints at all levels and dynamically adapt the computation to it as far as possi-
ble. A direct use of locally produced renewable energy could reduce the distribution
infrastructure, but must cope with its often variable nature. Thus, better adaptation
mechanisms allow for more direct use of renewable energy.

In general, we need adaptation to deal with both supply side and demand side vari-
ations. The supply side variations result both from the actual variations in energy
supply and the variations as a result of varying the partitioning of available energy
among various components. The demand side variations (which themselves drive vari-
ability in partitioning) result from variations in workload intensity and characteristics.
It has been noted that as the computing moves towards more real–time data mining
driven answers to user queries [Chang et al. 2008], the demand side variations could
become significantly more severe, thereby further increasing the need for adaptation
to available energy.

2. RELATED WORK

Power control techniques [Nedevschi et al. 2008; Isci et al. 2006; Chase et al. 2001]
typically focus on harvesting the idle periods or periods of low activity in the workloads
and either put the devices in low power modes or reduce the operation bandwidth of
the components. Research works have explored the use of power control techniques
in various components in the data centers, including CPU [Yang and Orailoglu 2006;
Parikh et al. 2004], memory [Kant 2011; Venkatachalam and Franz 2005], network
links [Kant 2009; Gupta and Singh 2007] and disks [Gurumurthi et al. 2003; Colarelli
and Grunwald 2002].

Heller et al. [B.Heller et al. 2010] propose a dynamic change in the number of ac-
tive components with changing workload patterns. The goal is to use only a required
subset of network components and power down unnecessary components. Moore et
al. [Moore et al. 2005] incorporate temperature profiles in data centers to make work-
load placement decisions. Wang et al. [Wang et al. 2009] propose an algorithm based
on optimal control theory to meet with the energy and thermal constraints in chip
multi-processors. Their algorithm exploits the availability of per-core DVFS in current
day processors and formulates a MIMO model for multi-core processors. Anderson et
al. [Andersen et al. 2009] propose a cluster architecture with low-power, cheap proces-
sors and flash storage. This architecture performs best in data intensive application
scenarios with small sized random accesses.

Virtualization is increasingly being used in high performance server clusters due to
its application isolation capabilities and ease of management. Nagarajan et al. [Na-
garajan et al. 2007] propose a scheme that migrates virtual machines hosting MPI ap-
plications from a fault–prone node to a healthy node proactively. Verma et al. [Verma
et al. 2008] investigate the power management in virtualized server clusters host-
ing HPC applications. They use their experimental results to build a framework for
power - aware application placement in virtualized clusters. Their placement strategy
takes both CPU usage and working set size into account.

Nathuji and Schwan [Nathuji and Schwan 2007] propose a coordinated power man-
agement scheme in distributed environments with virtual machines. They leverage the
guest level power management techniques and realize them in real time on the host

1Here “energy adaptation” implicitly includes power and thermal adaptation as well.
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without violating the guaranteed resource isolation between multiple guests. X. Wang
and Y. Wang [Wang and Wang 2010] propose a cluster level coordinated control ar-
chitecture that aims at providing per-VM performance guarantees and a cluster level
power control. Sharma et al. [Sharma et al. 2011] propose a scheme to handle inter-
mittent energy constraints by applying duty cycles to servers. The servers are turned
off and on periodically to reduce their energy consumption. Their technique is a purely
power driven management scheme and is independent of workload demands.

K. Kant proposes Energy Adaptive Computing (EAC) [K.Kant 2009] as a solution to
the problem of handling variations in energy availability. Our current work explains
the principles and challenges behind Energy Adaptive Computing in a comprehensive
manner and also serves as an extension of our previous work [Kant et al. 2011]. In this
paper we present a complete design and analysis of a control scheme called (Willow)
to achieve QoS guarantees with EAC. Willow considers power and thermal constraints
simultaneously. This paper builds a detailed task model based on QoS requirements of
tasks and evaluates Willow via more detailed simulations to include the response time
as a QoS measure.

3. SUSTAINABILITY AND ENERGY ADAPTIVE COMPUTING

It is well recognized by now that much of the power consumed by a data center is either
wasted or used for purposes other than computing. In particular, when not managed
properly, up to 50% of the data center power may be used for purposes such as chilling
plant operation, compressors, air movement (fans), electrical conversion and distribu-
tion, and lighting [Greenberg et al. 2006]. Furthermore, the operational energy is not
the only energy involved here. Many of these functions are quite materials and in-
frastructure heavy and a substantial amount of energy goes into the construction and
maintenance of the cooling and power conversion/distribution infrastructures. In fact,
even the “raw” ingredients such as water, industrial metals, and construction materials
involve considerable hidden energy footprint in the form of making those ingredients
available as usable energy.

It follows that from a sustainability perspective, it is not enough to simply mini-
mize operational energy usage or wastage; we need to minimize the energy that goes
into the infrastructure as well. Towards this end, it is important to consider data cen-
ters that can be operated directly via locally produced renewable energy (wind, solar,
geothermal, etc.) with minimal dependence on the power grid or large energy storage
systems. Such an approach reduces carbon footprint not only via the use of renewable
energy but also by reducing the size and capacity of power storage and power-grid
related infrastructure. For example, a lower power draw from the grid would require
less heavy–duty power conversion infrastructure and reduce its cost and energy foot-
print. The down–side of the approach is more variable energy supply and more fre-
quent episodes of inadequate available energy to which the data center needs to adapt
dynamically. Although this issue can be addressed via large energy storage capacity,
energy storage is currently very expensive and would increase the energy footprint of
the infrastructure.

In large data centers, the cooling system not only consumes a substantial percentage
of total power (up to 25%) but also requires significant infrastructure in form of chiller
plants, compressors, fans, plumbing, etc. Furthermore, chiller plants use a lot of water,
much of which simply evaporates. Much of this resource consumption and infrastruc-
ture can be done away with by using ambient (or “free”) cooling, perhaps supplanted
with undersized cooling plants that kick in only when ambient temperature becomes
too high. Such an approach requires the energy consumption (and hence the computa-
tion) to adapt dynamically to the available cooling ability. The energy available from a
renewable source (e.g., solar) may be correlated with the temperature (e.g., more solar
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energy on hotter days), and such interactions need to be considered in the adaptation
mechanisms.

Yet another sustainability issue is the overdesign and over provisioning that is com-
monly observed at all levels of computer systems. In particular, the power and cool-
ing infrastructure in servers, chassis, racks, and the entire data center is designed
for worst-case scenarios which are either rare or do not even occur in realistic envi-
ronments. Although data centers are beginning to derate specified power and cooling
requirements to address this lack of realism, derating alone is inadequate for two rea-
sons: (a) it still must provide significant safety margin, and (b) derating is used only
for sizing up the data center power distribution and cooling capacities, not in server
design itself. Instead we argue for much leaner design of all components having to do
with power/thermal issues: heat sinks, power supplies, fans, voltage regulators, power
supply capacitors, power distribution network, Uninterrupted Power Supply (UPS), air
conditioning equipment, etc. This leanness of the infrastructure could be either static
(e.g., lower capacity power supplies and heat sinks, smaller disks, DRAM, etc.), or dy-
namic (e.g., phase shedding power supplies, hardware resources dynamically shared
via virtualization). In either case, it is necessary to adapt computations to the limits
imposed by power and thermal considerations. We assume that in all cases the design
is such that limits are exceeded only occasionally, not routinely.

4. DISTRIBUTED ENERGY ADAPTIVE COMPUTING

It is clear from the above discussion that many advanced techniques for improving
energy efficiency of IT infrastructure and making it more sustainable involve the need
to dynamically adapt computation to the suitable energy profile. In some cases, this
energy profile may be dictated by energy (or power) availability, in other cases the lim-
itation may be a result of thermal/cooling constraints. In many cases, the performance
and/or QoS requirements are malleable and can be exploited for energy adaptation. For
example, under energy challenged situations, a user may be willing to accept longer
response times, lower audio/video quality, less up to date information, and even less
accurate results. These aspects have been explored extensively in specific contexts,
such as adaptation of mobile clients to intelligently manage battery lifetime [Flinn
and Satyanarayanan 2004]. However, complex distributed computing environments
provide a variety of opportunities for coordinated adaptation among multiple nodes
and at multiple levels. In general, there are three types of distributed energy adap-
tation scenarios: (a) Cluster computing (or server to server), (b) Client-server, and (c)
Peer to Peer (or client to client). These are shown pictorially in Fig. 1 using dashed
ovals for the included components and are discussed briefly in the following. Notice
that in all cases, the network and the storage infrastructure (not shown) are also im-
portant components that we need to consider in the adaptation.

Although we discuss these three scenarios separately, they generally need to be ad-
dressed together because of multiple applications and interactions between them. For
example, a data center would typically support both client-server and cluster applica-
tions simultaneously. Similarly, a client may be simultaneously involved in both peer-
to-peer and client-server applications. In this paper however we explore only cluster
EAC in detail.

4.1. Cluster EAC

Cluster EAC refers to computational models where the request submitted by a client
requires significant computation involving multiple servers before the response can be
returned. That is, client involvement in the service is rather minimal, and the energy
adaptation primarily concerns the data center infrastructure. In particular, a signifi-
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Fig. 1. Illustration of energy adaptation loops

cant portion of the power consumed may go into the storage and data center network
and they must be considered in adaptation in addition to the servers themselves.

In cluster EAC, the energy adaptation must happen at multiple levels. For example,
the power capping algorithms may allocate a certain power share to each server in a
chassis or rack, and the computation must adapt to this limit. In addition, there may
be a higher level limit as well – for example, the limit imposed by the power circuits
coming into the rack. At the highest level, energy adaptation is required to conform
to the power generation (or supply) profile of the energy infrastructure. The limits
placed at the lower level generally need to be more dynamic than at higher levels.
Translating higher level limits into lower level limits is a challenging problem and
requires a dynamic multi–level coordination [Raghavendra et al. 2008]. A related issue
is that of energy limitation along the software hierarchy (e.g., service, application,
software modules, etc.) and corresponding multi–level adaptation.

In addition to the energy availability, the thermal constraints play a significant role
in workload adaptation. Traditionally, CPUs are the only devices that have significant
thermal issues to provide both thermal sensors and thermal throttling mechanisms to
ensure that the temperature stays within appropriate limits. For example, the T states
provided by contemporary CPUs allows introduction of dead cycles periodically in or-
der to let the cores cool. DIMMs are also beginning to be fitted with thermal sensors
along with mechanisms to reduce the heat load. With tight enclosures such as blade
servers and laptop PCs, ambient cooling, and increasing power consumption, other
components (e.g. switching fabrics, interconnects, shared cache, etc.) are also likely to
experience thermal issues. In challenging thermal environments, a coordinated ther-
mal management is crucial because the consequences of violating a thermal limit could
be quite severe. Also, an over throttling of power to provide a conservative temperature
control could have severe performance implications.

Thermal control at the system level is driven by cooling characteristics. For example,
it is often observed that all servers in a rack do not receive the same degree of cooling,
instead, depending on the location of cooling vents and air movement patterns, certain
servers may receive better cooling than others. Most data centers are unlikely to have
finer grain mechanisms (e.g., air direction flaps) to even out the cooling effectiveness.
Instead, it is much easier to do their thermal management to conform to the cooling
profile. So, the simplest scheme is for each server to manage its own thermals based on
the prevailing conditions (e.g., on-board temperature measurements). However, such
independent controls can lead to unstable or suboptimal control. A coordinated ap-
proach such as the one considered in this paper could be used to ensure satisfactory
operation while staying within the temperature limits or rather within the power lim-
its dictated by the temperature limit and heat dissipation characteristics.
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4.2. Client-Server EAC

Client-server EAC needs to deal with both client-end and server-end adaptation to
energy constraints in such a way so that client’s QoS expectations are satisfied. A coor-
dinated client-server energy adaptation could even deliver benefits beyond adaptation
per se. As the clients become more mobile and demand richer capabilities, the limited
battery capacity gets in the way. The client-server EAC can provide better user sat-
isfaction and service by seamlessly compensating for lack of client resources such as
remaining battery, remaining disk space, operating in a hot environment, etc. In fact,
such techniques can even help slow down client obsolescence and thus enhance the
goal of sustainability.

Client-server EAC can be supported by defining client energy states and the QoS
that the client is willing to tolerate in different states and during state switching. This
information could be communicated to the server side in order to effect appropriate
adaptation actions as the client energy state changes. The situation here is similar
to but more complex than the contract based adaptation considered in [Petrucci et al.
2009]. The major challenge is to decide optimal strategy to ensure the desired end-
to-end QoS without significant overhead or increase in complexity. In a client-server
computing, the client adaptation could also be occasionally forced by the server-side
energy adaptation. Since server-side adaptation (such as putting the server in deep
sleep state and migrating the application to another server) can affect many clients,
the server side adaptation decisions become quite complex when interacting with a
large number of geographically distributed and heterogeneous clients. Involving the
network also in the adaptation further complicates the problem and requires appro-
priate protocol support.

4.3. Peer to Peer EAC

In a peer to peer setting involving increasingly mobile clients, energy consumption is
becoming an important topic. Several recent papers have attempted to characterize
energy consumption of P2P content sharing and techniques to improve their energy
efficiency [Gurun et al. 2006; Kelényi and Nurminen 2009; Kelenyi and Nurminen
2008]. Energy adaptation in P2P environment is quite different from that in a client-
server setting. For simple file-exchange between a pair of peers, it is easy to consider
the energy state of the requesting and serving peers and that of their network connec-
tions; however, a collective adaptation of a large number of peers can be quite complex.
Furthermore, it is important to consider the fundamental P2P issue of get-give in this
adaptation. In particular, if a peer is in a power constrained mode, it may be allowed to
be more selfish temporarily (i.e., allowed to receive the appropriate low-resolution con-
tent that it needs without necessarily supplying content to others). In a more general
situation such as Bit Torrent where portions of file may come from different clients,
deciding and coordinating content properties and assembling the file becomes more
challenging. In particular, it might be desirable to offload some of these functions to
another client (that is not in energy constrained mode). In general, addressing these
issues requires defining appropriate energy related metrics relative to the content re-
quester, all potential suppliers (or “servers”), transit nodes and the intervening net-
work. A framework that allows minimization of global energy usage while satisfying
other local performance and energy requirements can be quite challenging.

5. CHALLENGES IN DISTRIBUTED EAC

5.1. Energy Constraints in Data Centers

In the above, we made little distinction between “energy” and “power”; however, there
are subtle differences with respect to both their minimization and adaptation to limits
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on them. Energy (or equivalently average power over long periods) can be minimized
by deliberately increasing power consumption over short periods. There are many sit-
uations where simultaneous energy and power constraints may be required. For exam-
ple, in a data center, the capacity of power circuits (e.g., chassis or rack circuit capacity,
or capacity of individual asset power supply) must be respected while at the same time
abiding by energy constraints (or constraint in terms of average power over longer
periods)

The real energy or power limitation usually applies only at a rather high level – at
lower levels, this limitation must be progressively broken down and applied to subsys-
tems in order to simplify the overall problem. For example, in case of a data center
operating in an energy constrained environment, the real limitation may apply only
at the level of the entire data center. However, this limitation must be broken down
into allocations for the physical hierarchy (e.g., racks, servers, and server components)
and also along logical hierarchy (e.g., service, application, and tasks). While such a
recursive break-down allows independent management of energy consumption at a
finer-grain level, an accurate and stable allocation is essential for proper operation.
We address this issue in detail in section 6.

5.2. Estimation and Allocation of Energy

Good energy allocation or partitioning requires an accurate estimation of energy re-
quirements at various layers. Although a direct measurement of energy consumption
is straightforward and adequate for making allocations, it only allows reactive (or after
the fact) estimation. For example, if additional workload is to be placed on a server, it
is necessary to know how much power it will consume before the placement decision is
made. This is often quite difficult since the energy consumption not only depends on
workload and hardware configuration but also on complex interactions between vari-
ous hardware and software components and power management actions. For example,
energy consumed by the CPU depends on the misses in the cache hierarchy, type of
instructions executed, and many other micro-architectural details and how they relate
to the workload being executed.

A fairly standard method for estimating power is to compute power based on a va-
riety of low–level performance monitoring counters that are available on–chip and be-
coming increasingly sophisticated. The trick usually is to find a small set of counters
that can provide a good estimate of power [Krishnan et al. 2011]. While quite accurate,
such a scheme does not have much predictive power since the relationship between
high level workload characteristics and performance counters is nontrivial. If multi-
ple tasks are run on the same machine, they can interact in complex ways (e.g., cache
working set of one task affected by presence of another task). Consequently, neither
the performance nor the power consumption adds up linearly, e.g., the active power
for two VMs running together on a server does not equal the sum of active powers of
individual VMs on the same server. It may be possible to come up with an estimation
method that can account for such interference.

5.3. Mechanisms to Cope with Energy Limitations

When energy availability is restricted, certain applications – particularly those in-
volved in background activities – don’t need to run. Others may run less frequently,
with fewer resources, or even change their outputs, and still provide acceptable re-
sults. For applications that are driven by client requests and must run, the treatment
depends on a variety of factors such as Service Level Agreement (SLA) requirements,
level of variability in the workload characteristics, latency tolerance, etc. For example,
if the workload can tolerate significant latencies and has rather stable characteris-
tics, the optimal mechanism at the server level is to migrate the entire workload to a
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smaller set of servers so they can operate without power limitations and shut-down
the rest. In this case, a tradeoff is necessary with respect to additional energy savings,
SLA requirements, and migration overheads. As the workload becomes more latency
sensitive, the latency impact of reconfiguration and power management actions must
be taken into account. In particular, if firing up a shut–down server would violate la-
tency and response time related SLA, it is no longer possible to completely shut–down
the servers and instead one of the lower latency sleep modes must be used..

Energy (or equivalently average power over long periods) can be minimized by de-
liberately increasing power consumption over short periods. For example, it may be
possible to minimize energy for a given set of tasks to be executed by running these
tasks at the highest speed and then putting the machine in a low–power mode. This
race-to-halt policy has traditionally been suboptimal because of the possibility of sig-
nificant voltage reductions at low speeds in the traditional DVFS (dynamic voltage and
frequency scaling) techniques by running them at lower frequencies and voltages so as
raise the device utilization. However, as voltages approach minimum threshold for reli-
able operation, the voltage differences between various available speeds are becoming
rather small. At the same time, the idle power consumption continues to go up due to
increased leakage current. In such a situation, race-to-halt becomes an increasingly
attractive scheme.

It is important to note that in case of EAC, often the problem is not inadequate
work, but rather inadequate energy to process the incoming work. Obviously, in order
to reduce the average power consumption, we need to slow down processing, except
that this slowdown is not triggered by idling. Unlike the situation where the goal is
to minimize wasted energy, an energy constrained environment requires careful si-
multaneous management of multiple subsystems in order to make the best use of the
available energy. For example, it is necessary to simultaneously power manage CPU,
memory and IO adapters of a server in order to ensure that the energy can be deliv-
ered where most required. It is apparent that there is scope for considerable further
work on how and when to apply various kinds of adaptation mechanisms (e.g., lower
resolution, higher latency, control over staleness and/or accuracy, etc.) under various
kinds of power/thermal limitation scenarios.

6. ENERGY ADAPTATION IN DATA CENTERS

In this section we explore cluster EAC in detail. In particular, we discuss the design of
a control system called Willow [Kant et al. 2011] to provide energy and thermal adap-
tation within a data center. Willow provides a hierarchical energy adaptation within
data centers in response to both demand and supply side variations. Although a com-
prehensive energy adaptation scheme could include many facets, the current design of
Willow is geared towards load consolidation and migration. In Section 6.4 we present
the design of a QoS aware scheduling scheme and demonstrate how Willow can be used
in tandem with the scheduler to achieve the guaranteed QoS for different applications.

6.1. Hierarchical Power Control

Power/energy management is often required at multiple levels including individual
devices (CPU cores, memory DIMMs, NICs, etc.), subsystems (e.g., CPU - cache sub-
system), systems (e.g., entire servers), and groups of systems (e.g., chassis or racks).
In a power limited situation, each level will be expected to have its own power budget,
which gets divided up into power budgets for the components at the next level. This
brings in extra complexity since one must consider both the demand and supply sides
in a coordinated fashion at various levels. In this paper we use such a multilevel power
control architecture. One simple such power management model is shown in Figure 2.
The data center level power management unit (PMU) is at the level 3. The rack level
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PMU is at level 2 and server/switch level PMUs are at level 1. With such a multilevel

Fig. 2. A simple example of multi-level power control in a datacenter

power management architecture our control scheme attempts to provide the scalabil-
ity required for handling energy and thermal adaptation in large data centers with
minimum impact on the underlying networks.

In the hierarchical power control model that we have assumed, the power budget in
every level gets distributed to its children nodes in proportion to their demands. All
the leaf nodes are in level 0. The component in each level l+ 1 has configuration infor-
mation about the children nodes in level l. For example the rack level power manager
has to have knowledge of the power and thermal characteristics of the individual com-
ponents in the rack. The components at level l continuously monitor the demands and
utilization levels and report them to level l + 1. This helps level l + 1 to continuously
adjust the power budgets. Level l+ 1 then directs the components in level l as to what
control action needs to be taken. The granularities at which the monitoring of power
usage and the allocation adjustments are done are different and are discussed later in
Section 6.3.1.

6.2. Energy-Temperature relationship

In the design of our control scheme we limit the power consumption of a device based
on its thermal limits as follows.

Let t denote time, T (t) the temperature of the component as a function of time, P (t)
power consumption as a function of time, and c1, c2 be the appropriate thermal con-
stants. Also, let Ta denote the ambient temperature, i.e., temperature of the medium
right outside the component. The component will eventually achieve this temperature
if no power is supplied to it. Then the rate of change of temperature is given by

dT (t) = [c1P (t) + c2(T (t)− Ta)]dt (1)

Being a first-order linear differential equation, this equation has an explicit solution.
Let T (0) denote the temperature at time t = 0. Then,

T (t) = [Ta + [T (0)− Ta]e
−c2t] + c1e

−c2t

∫ t

0

P (τ)ec2τ dτ (2)

where the first term relates to cooling and tends to the ambient temperature Ta and
the second term relates to heating. Let Tlimit denote the limit on the temperature and
Plimit is the limit on power consumption so that the temperature does not exceed Tlimit

during the next adjustment window of ∆s seconds. It is easy to see that,

T (τ) = Ta + Plimitc1/c2[1− e−c2∆s ] + [T (0)− Ta]e
−c2∆s (3)
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It can be observed that Equation 2 can be used to predict the value of temperature of
the device at the end of the next adjustment window and hence can help in making
the migration decisions. We use this relationship to estimate the maximum power
consumption that can be allowed on a node so that it does not exceed its thermal
limits.

6.3. Supply And Demand Side Coordination

Willow implements a unidirectional hierarchical power control scheme. Migrations of
power demands are initiated by the power and thermal constraints introduced as a
result of increase in demand at a particular node or decrease in power budget to the
node. Simultaneous supply and demand side adaptations are done to match the de-
mands and power budgets of the components.

6.3.1. Time Granularity. The utilization of server resources in a data center varies
widely over a large scale. If the nature of the workload fluctuates significantly, it is
likely that different resources (e.g., CPU cores, DRAM, memory bus, platform links,
CPU core interconnects, I/O adapters, etc.) become bottlenecks at different times; how-
ever, for a workload with stable characteristics (but possibly varying intensity) and
a well-apportioned server, there is one resource (typically CPU and sometimes net-
work adapter) that becomes the first bottleneck and its utilization can be referred to
as server utilization. We assume this is the case for the modeling presented in this
paper, since it is extremely difficult to deal with arbitrarily configured servers running
workloads that vary not only in intensity but their nature as well. Under these as-
sumptions, the power consumption can be assumed to be a linear monotonic function
of the utilization.

Because of varying intensity of the workload, it is important to deal with average
utilizations of the server at a suitable time granularity. For convenience the demand
side adaptations are discretized with a time granularity of ∆Dl. It is assumed that this
time granularity is sufficiently coarse to accommodate accurate power measurement
and its presentation, which can be quite slow. Typically, appropriate time granular-
ity at the level of individual servers are of the order of tens of milliseconds or more.
Coarser granularities may be required at higher levels (such as rack level).

Even with a suitable choice of ∆Dl, it may be necessary to do further smoothing in
order to determine trend in power consumption. Let CPl,i be the power demand of node
i at level l. For exponential smoothing with parameter 0 < α < 1, the smoothed power
demand CP ′ is given by:

CP ′
l,i = αCPl,i + (1− α)CP ′old

l,i (4)

Note that the considerations in setting up the value of ∆Dl come from the demand
side. In contrast, the supply side time constants are typically much larger. Because of
the presence of battery backed UPS and other energy storage devices, any temporary
deficit in power supply in a data center is integrated out. Hence the supply side time
constants are assumed to be ∆Sl = η1∆Dl, where η1 is an integer > 1. Willow also per-
forms workload consolidation when the demand in a server is very low so that some
servers can be put in a deep sleep state such as S3 (suspend to memory) or even S4
(suspend to disk). Since the activation/deactivation latency for these sleep modes can
be quite high, we use another time constant ∆Al for making consolidation related de-
cisions. We assume ∆Al = η2∆Dl, for some integer η2 such that η2 > η1.

6.3.2. Supply Side Adaptation. As mentioned earlier we ignore the case where the data
center operates in a perpetually energy deficient regime. The available power budget of
any level l+1 is allocated among the nodes in level l proportional to their demands. As
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mentioned in Section 6.3.1 the supply side adaptations are done at a time granularity
of ∆Sl. Hence the power budget changes are reflected at the end of every ∆Sl time
period. Let TPold

l+1 be the overall power budget at level l + 1 during the last period.

TPl+1 is the overall power budget at the end of current period. ∆TP = TPl+1- TPold
l+1 is

the change in overall power budget. If ∆TP is small we can update the values of TPl,i’s
rather trivially. However if ∆TP is large we need to reallocate the power budgets of
nodes in level l. In doing so we consider both hard constraints due to power limitations
of devices and soft constraints due to available power budgets.

The power and thermal constraints thus necessitate the migration of demand in
level l from power deficient nodes to nodes with surplus power budget. Any increase
in the overall power budget happens at a higher level and is then reflected in its con-
stituent lower levels. This situation can lead to three subsequent actions.

(1) If there are any under provisioned nodes they are allocated just enough power
budget to satisfy their demand.

(2) The available surplus can be harnessed by bringing in additional workload.
(3) If surplus is still available at a node then the surplus budget is allocated to its

children nodes proportional to their demand.

6.3.3. Demand Side Adaptation. The demand side adaptation to thermal and energy pro-
files is done systematically via migrations of the demands. We assume that the fine
grained power control in individual nodes is already being done so that any available
idle power savings can be harvested. Our focus in this paper is on workload migration
strategies to adapt to the energy deficient situations. For specificity we consider only
those type of applications in which the demand is driven by user queries and there is
minimum or no interaction between servers, (e.g.,) transactional workloads. The appli-
cations are hosted by one or more virtual machines (VMs) and the demand is migrated
between nodes by migrating these virtual machines. Hence the power consumption
is controlled by simply directing the user queries to the appropriate servers hosting
them.

We carefully avoid pitfalls like oscillations in decisions by allowing sufficient mar-
gins both at the source and the destination to accommodate fluctuations after the mi-
grations are done. The migrations are initiated in a bottom up manner. If the power
budget TPl,i of any component i is too small then some of the workload is migrated to
one of its sibling nodes. We call this as local migration. Only when local migrations to
sibling nodes is not possible non–local migrations are done.

The migration decisions are made in a distributed manner at each level in the hi-
erarchy starting from the lowermost level. The local demands are first satisfied with
the local surpluses and then those demands that are not satisfied locally are passed
up the hierarchy to be satisfied non-locally. Now we define a few terms related to the
migration decisions.

Power Deficit and Surplus: The power deficit and surplus of a component i at level l
are defined as follows.

Pdef (l, i) = [CP ′
l,i − TPl,i]

+ (5)

Psur(l, i) = [TPl,i − CP ′
l,i]

+ (6)

where []+ means if the difference is negative it is considered zero.
If there is no surplus that can satisfy the deficit in a node, the excess demand is

simply dropped. In practice this means that some of the applications that are hosted
in the node are either shut down completely or run in a degraded operational mode to
stay within the power budget.

Special Issue on Sustainable and Green Computing Systems, ACM Journal on Emerging Technologies in Computing Systems, Pub. date: April 2012.



A:12 K.Kant, M.Murugan et al.

Power Margin (Pmin): The minimum amount of surplus that has to be present af-
ter a migration in both the source and target nodes of the migration. This helps in
mitigating the effects of fluctuations in the demands.

Migration Cost: The migration cost is a measure of the amount of work done in the
source and target nodes of the migrations as well as in the switches involved in the
migrations. This cost is added as a temporary power demand to the nodes involved.

A migration is done if and only if the source and target nodes can have a surplus of
at least Pmin. Also migrations are done at the application level and hence the demand
is not split between multiple nodes. Finally Willow also does resource consolidation
to save power whenever possible. When the utilization in a node is really small the
demand from that node is migrated away from it and the node is deactivated.

The matching of power deficits to surpluses is done by a variable sized bin packing
algorithm called FFDLR [Friesen and Langston 1986] solves a bin packing problem of
size n in time O (n log n). The optimality bound guaranteed for the solution is (3/2) OPT
+1 where OPT is the solution given by an optimal bin packing strategy.

6.4. QoS Aware Scheduler

Traditional scheduling algorithms like round robin and priority based scheduling are
not QoS aware and do not have any feedback mechanism to guarantee the QoS require-
ments of jobs. A few algorithms that attempt to guarantee some level of QoS do so by
mechanisms like priority treatment and admission control. Our objective in this work
is to allow for energy adaptation while respecting QoS needs of various applications to
the maximum extent possible. In this regard we implemented a QoS aware scheduling
algorithm in the nodes as shown in Figure 3. The scheduler uses an integral controller
to adjust the weights of the applications at regular intervals based on the delay vio-
lations of the applications. The applications are allocated CPU shares proportional to
their weights. Applications with higher delay violations get more CPU share. It is well
known from classic queuing theory [Kant 1992] that in an asymptotic sense, as U → 1
the wait time of jobs is directly proportional to 1/(1 − U ) where U is the overall queue
utilization. Hence the integral gain for the controller is calculated as (1−U ). Using the
overall utilization as the integral gain also avoids oscillations and keeps the system
stable.

Fig. 3. QoS Aware Scheduler

Special Issue on Sustainable and Green Computing Systems, ACM Journal on Emerging Technologies in Computing Systems, Pub. date: April 2012.



Enhancing Data Center Sustainability Through Energy Adaptive Computing A:13

Fig. 4. Various adaptations done in Willow and the different time granularities

The error in delay E(t) for each application is the difference between the delay bound
and the measured delay. At the end of each sample interval t (of size ∆t), the new
weights are calculated as follows.

weight(t) = weight(t− 1) +Ki ∗ E(t) (7)

Then the CPU shares are allocated to the applications proportional to their weights.
Figure 4 shows an overall picture of the different adaptation mechanisms that are

done in Willow at different time granularities. The scheduler works in the individual
nodes at the smallest time granularity. At the next higher time granularity the demand
side adaptations are done that include migration of deficits to surplus nodes. At the
next higher granularity the supply side adaptations such as allocating power budgets
at different levels takes place. At the largest time granularity consolidation related
decisions are made that include shutting down of nodes with very low utilization.

7. EXPERIMENTAL EVALUATION

7.1. Assumptions and QoS model

Fig. 5. Configuration used in simulation

We built a simulator in Java for evaluating the ability of our control scheme to cater
to the QoS requirements of tasks when there are energy variations. The Java simulator
can be configured to simulate any number of nodes and levels in the hierarchy. For our
evaluations we used the configuration shown in Figure 5. There are 18 nodes and 3
types of applications. The application types and their SLA requirements are shown
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Table I. Utilization vs power consumption

Application Type SLA Requirement Mean Runtime
Type I Average Delay ≤ 120ms, cannot be migrated 10ms

Type II Average Delay ≤ 180ms, can be migrated 15ms

Type III Average Delay ≤ 200ms, can be migrated 20ms

in Table I. For simplicity we assume that each application is hosted in a VM and can
be run on any of the 18 nodes. To begin with, each node is assigned a random mix
of applications. The static power consumption of nodes is assumed to be 20% of the
maximum power limit (450W ). There is a fixed power cost associated with migrations.
In the configuration that we use for our experiments, we assume a single SAN storage
that can be accessed by all nodes in the data center. Storage migration is done when
the VM disk files have to be migrated across shared storage arrays due to shortage of
storage capacity and is usually dealt with separately (eg. Storage VMotion [VMWare
vSphere ]) so as to reduce the delays involved. Since we deal with compute intensive
applications in our experiments, we assume a single shared storage domain is large
enough to support the applications and we do not account for delays involving data
migrations.

Since our experimental platform consists of multiple VMs with independent traffic
patterns, initially we ran our experiments for the case where the traffic to each indi-
vidual VM was a Poisson process. In order to test our proposed scheme with real world
traces, we used the Soccer World Cup 98 [M. Arlitt and T. Jin ] traces for our evalua-
tion. In this paper, we present only the results with the World Cup 98 trace. The trace
dataset consists of all the requests made to the 1998 Soccer World Cup Web site during
April to July, 1998. Since the trace data was collected from multiple physical servers,
we had to process the traces before we could use them in our virtualized environment.
We used traces collected on different days for different VMs. We scaled the arrival
rates of queries to achieve the target utilization levels. We assume that the queries in
the traces belonged to the three classes of applications as shown in Table I. The service
times for queries for each application class is different and the energy consumed by a
query is assumed to be proportional to its runtime. The time constant multipliers for
discrete time control η1 and η2 in Section 6.3.1 are assumed to be 4 and 7 respectively.
Unless specified otherwise the ambient temperature of the nodes was assumed to be
25◦C. Also the thermal limit of the servers and switches is assumed to be 70◦C. The
thermal constants in Equation 1 were determined to be c1 = 0.2 c2 =−0.008 from the ex-
periments as described in [Kant et al. 2011]. We use these values for our simulations
as well.

We measure the utilization of a VM based on CPU time spent by the VM in ser-
vicing the requests. However the actual utilization may be higher. For instance the
actual utilization of a task may be increased due to CPU stalls that are caused by
memory contention from other tasks or context switches between multiple VMs. In
our simulations we include a factor called the interference penalty for the utilization
and power/energy calculations. Basically the idea is that when n tasks are running on
a server, the utilization of each task is increased due to the interference from the other
(n− 1) tasks. Hence the actual utilization of an application is calculated as follows.
Ui = Ui + α

∑
j Uj , ∀j ∈ {1, 2, ...n} − {i}

Unode = min [1.0,
∑n

i=1
Ui]

where n is the total number of applications in the node
Ui is the utilization of ith application , i ∈ {1, 2, ...n}.
Unode is the actual utilization of the node.
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We then calculate the average power consumed in the node based on the actual
average utilization of the node. We conducted a few experiments on a Dell machine
running VMWare ESX server to determine the value of α. We varied the number of
VMs and their utilization levels and compared the sum of their utilizations with the
actual utilization reported by the ESX server. We then calculated the the value of α
using simple first order linear regression. The value of α was found to be 0.01 Note
that the workload that we used in our experiments was totally CPU bound. For other
workloads that involve memory or network contention, the interference penalty might
be higher.

7.2. Simulation Results

In order to evaluate the performance of the integral controller we placed all 3 types
of applications on a single node and the incoming traffic to each of the applications
was assumed to be a Poisson process. Figure 6 shows the delays of queries normalized
to their delay bounds at a utilization level of 60%. Any value of delay greater than 1
implies an SLA violation. A QoS ignorant scheduler simply serves queries as they ar-
rive. This leads to increased delay violations for queries. For instance, when there are
too many Type I queries that have a smaller delay bound waiting in the queue, a QoS
aware scheduler will make Type III queries to wait a little longer in the queue since
they can tolerate much longer delays. On the other hand a QoS ignorant scheduler
continues to favor both Type I and Type III queries equally and hence leading to delay
violations for Type I queries. It can be seen from Figure 6 that almost during the entire
time, the feedback based integral controller successfully keeps the delays of all 3 types
of queries below the bounds specified by their SLA requirements.

Fig. 6. Time series of average delays of queries normalized to delay bounds with simple Round Robin and
QoS Aware Scheduling

We use the response time as a metric to quantify the impact of EAC in the presence
of variations in energy. The response time includes the time that the queries wait in
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Fig. 7. Power Supply Profiles Used - Histogram of power supply values and the utilization levels supported

the queue to be scheduled and the run time of the queries. We show that the response
times are improved when adaptations to the energy variations are done in Willow.
The significance of Willow is realized the most when the devices are operating at the
edge - that is when the power budgets are just enough to meet the aggregate demand
in the data center and there is no over provisioning. To demonstrate this, we tested
the performance of Willow with two different cases of power budgets. Let PU be the
power required to support the data center operations when the average utilization of
the servers is U%. Figure 7 shows the histogram of the total available power budget
values during the simulation of 350 minutes and the number of minutes for which the
particular power budget value was available. The first case (Case 1) is when the total
available power budget varies between P100 and P60. The second case (Case 2) is when
the total power budget varies between t P80 and P50.

(a) (b)

Fig. 8. % of queries with delay violations when total power budget varies around the power supply value
required to support (a) 80% utilization (b) 100% utilization

Figure 8 (a) compares the percentage of queries with delay violations in Case 1 when
the QoS aware scheduler alone is used and when the scheduler is used in combination
with Willow. We see that at low utilizations the performance of Willow is not signif-
icantly better than when the QoS aware scheduler alone is used. However at high
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Fig. 9. Average delay values normalized to delay bounds

utilizations Willow performs better than the case when the QoS aware scheduler alone
is used since there are no adaptation related migrations. Figure 8 (b) shows the per-
centage of queries with delay violations in Case 2. It can be seen that the benefits of
Willow are very significant in Case 2 as compared to Case 1, especially at moderate to
high utilization levels. Figure 8 shows that an efficient QoS aware scheduler alone can-
not do any good in the presence of energy variations. Willow improves the possibility
of meeting the QoS requirements significantly with the help of systematic migrations.

Figure 9 shows the average delay of different application types normalized to their
delay bounds at different utilization levels for power profiles as in Case 2. As expected
the average delays increase with increase in utilization due to increased wait times.
It can be seen that at higher utilizations, the average normalized delay is higher for
Type I queries. The reason is two fold. Firstly, according to the SLA requirements
of Type I queries that we assume in Table I, they cannot be migrated. This reduces
the flexibility for these applications when the available power budget in the server
becomes very low. Secondly, the absolute values of the delay bound is much smaller
than the other two types and hence the average delay when normalized to the delay
bound is naturally higher. Since the delay requirements of Type II and Type III are
almost the same, they are equally impacted. It can be seen that even at low utilizations
there are queries that have delay violations. This is because when the available energy
drops, the demand side adaptations are done only after ∆Dl in Willow. During that
time if the estimated demand is less than the actual demand some queries have to wait
longer to be scheduled. Moreover the utilization levels are just an average (calculated
at a much higher granularity) and there can be periods of congestion even at those low
utilization levels. This is especially handled very poorly when there are no migrations.

Figures 10 and 11 demonstrate the thermal adaptability of Willow. We set the am-
bient temperatures of servers 1 − 4 at 45◦C and the other servers at 25◦C. In order
to enforce power budgets we reduce the available CPU shares proportional to their
allocated power budgets. Figure 10 shows the average delays in the servers when the
first four servers are at a higher temperature than others. To avoid clutter we show
the average response times only for the first 9 servers. As expected in all servers the
response time increases with increase in utilization. However at low to moderately
high utilization levels (≤ 60%) it can be seen that the average response time is lower
in high–temperature severs. This is because Willow is able to migrate most of the load
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Fig. 10. Avg. delay values for Type I queries when servers 1 − 4 are at a higher ambient temperature

away from high temperature servers. Hence the waiting time for queries is reduced
which in turn improves the response times in the high–temperature servers.

(a) (b)

Fig. 11. % of queries with delay violations when servers 1–4 are at high temperature at (a) 60% utilization
(b) 80% utilization

Figure 11 (a) shows the percentage of queries with delay violations when the am-
bient temperature of servers 1–4 is 45◦C at 60% utilization. As explained before, at a
moderately high utilization level(60%), Willow migrates applications away from high
temperature servers and hence they run at lower utilizations. This in turn reduces the
number of queries with delay violations. However at high utilization (80%) the high
temperature servers have no choice but to increase the delay of queries because no
migrations can be done. This is shown in Figure 11 (b) .

8. CONCLUSION AND FUTURE WORK

In this paper we have discussed the challenges involved in adapting to the energy
and thermal profiles in a data center. EAC puts power/thermal controls at the heart
of distributed computing. We discussed how EAC can make IT more sustainable and
elaborated on three different types of EAC scenarios. We have presented the design of
Willow, a simple control scheme for energy and thermal adaptive computing. A major
goal of this work is to inspire right-sizing the otherwise over designed infrastructure
in terms of power and ensure the possibility of addressing the ensuing challenges via
smarter control.

In this work, we have tested the performance of Willow in the case of transactional
workloads in simulations for specificity. In our experiments we used applications that
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are CPU intensive. A more complete control system for cluster EAC must be able to
measure power consumption and temperature of every component in the server includ-
ing memory, NIC, hard disks etc. and make fine grained control decisions. In the future,
we plan to consider more complex EAC scenarios including the problems of dividing
up available energy between servers, storage and network such that the application
progress can be optimized. We would also like to analyze the adaptation techniques
for cluster EAC under more complex workloads where there is excessive IPC traffic
among the servers in addition to requests from clients. A real time implementation
might need to consider the migrations that are caused as a result of resource con-
straints as well. In order to do a holistic power control, the adaptation must consider
the energy consumed by cooling infrastructure as well in the adaptation. Dealing with
data migrations that involve significant delays is a future direction that we intend
to pursue. Another interesting area that we wish to explore is the possibility of pre-
dicting the variations in energy profiles and doing some computations in advance in
anticipation of energy shortages.
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