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Abstract. Vision Language Models (VLMs) can provide natural lan-5

guage descriptions of complex activities from images and videos. How-6

ever, VLMs cannot isolate individual objects and only provide a generic7

caption for (or description of) the scene, making informative fine-tuning8

difficult. This paper proposes a novel fine-tuning mechanism that uses9

traditional computer vision techniques to recognize more straightforward10

proxy activities corresponding to the more complex activities for which11

the VLM is fine-tuned. Thus, by creating multiple fine-tuned VLMs for12

correlated activities and using explicit logic reasoning, we can estimate13

inconsistencies between them and conduct multi-step directed fine-tuning14

across them. Experiments with several VLMs (including those that op-15

erate on images and videos) and two very different video datasets (road16

traffic and taekwondo) show that our approach consistently increases the17

VLM accuracy by about 20 percentage points beyond that is achieved18

via undirected fine-tuning. The mechanism is very general and can be19

exploited to justify VLM output during inferencing.20

Keywords: Vision Large Language Models · Logic Reasoning · Object21

recognition/tracking · Satisfiability Modulo Theories22

1 Introduction23

Video-driven Visual Language Models (VLMs) have recently been developed to24

effectively summarize the content of an image or short video at an advanced level.25

Many VLMs have recently been put forward, including Clip [30], X-Clip [23],26

Video-LLAMA [40], LLAVA [21], MiniGPT [41], VideoMAE [33], and Video-27

chatGPT [24]. Some of these work only with images (e.g., MiniGPT4, LLAVA,28

Clip), while others work with (short) videos (e.g., Video-LLAMA, Video-ChatGPT,29

X-Clip, VideoMAE). VLMs are generally trained on a huge amount of available30

video data and text captions. Most VLMs (excluding Clip and X-Clip) have31

been integrated with the Large Language Models (LLMs) on the backend to32

support detailed Q&A capability and lucid descriptions of what is happening in33

the image/video. These descriptions can provide rich descriptions (e.g., type of34

venue where the activity occurs), which goes well beyond what is reasonably pos-35

sible using Traditional Computer Vision (TCV) techniques without extensive,36

application-specific training.37

In this paper, we propose a novel fine-tuning mechanism for VLMs by ex-38

ploiting logical reasoning along with TCV that can substantially improve their39
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performance on the targeted tasks. Our approach uses three key ideas to ac-40

complish this. First, instead of only tuning a VLM for the targeted task, we also41

fine-tune one (or more) additional copies of the VLM on correlated tasks. Second,42

we use TCV to identify the objects involved and track them, thereby enabling43

the representation of VLM output in terms of concrete logic assertions. Third, we44

set up logic assertions to detect (a) consistency between the VLMs based on the45

task correlation and (b) consistency between VLM outputs and TCV regarding46

the identified objects. It is thus possible to use standard logic reasoning tools to47

detect inconsistencies, which we exploit to choose the videos/images representing48

classes (or situations) where the VLM performs poorly. These videos/images are49

then used to fine-tune the VLMs further to improve their discrimination ability.50

The essential advantage of the mechanism is two-fold. First, it eases the burden51

of selecting and labeling videos/images for fine-tuning. Second, it reduces the52

resource requirements of fine-tuning, which can be pretty substantial. The pro-53

cess can be repeated until the accuracy has reached the limit dictated by the54

aleatoric uncertainty, data availability, or other considerations.55

By comparing our directed fine-tuning mechanism against the undirected56

one, we demonstrate a consistent improvement in accuracy by a huge 20 per-57

centage points, i.e., 70-80% achieved accuracy with directed tuning as opposed58

to 50-60% with undirected tuning. We show that this differential applies with59

both image-based VLMs such as Minigpt4 [41] and video-based VLMs such as60

XClip [23] and Video-MAE [35]. We also show that the improvement is sustained61

for two datasets, one relating to road traffic and traffic accidents and the other62

to the Taekwondo classroom. Furthermore, the mechanism is general and can be63

extended in several directions, as discussed in section 5. One exciting use of this64

mechanism is to provide justifications for the VLM output in the form of the65

results of the consistency checks. If the checks pass, we justify why the result can66

be trusted; if not, we indicate that we do not trust the results. To the best of our67

knowledge, this is the first work of its type to integrate explicit logic reasoning68

with computer vision to improve the fine-tuning of VLMs.69

The rest of this paper is organized as follows. Section 2 discussed the back-70

ground and related work. Section 3 presents the detailed design of our directed71

fine-tuning mechanism. Section 4 discusses the experimental assessment of the72

mechanism. Finally, section 5 concludes the discussion.73

2 Methodology and Related Work74

2.1 Fine-Tuning Vision Based Language Models75

Despite their rapidly increasing popularity, VLMs (and, more generally, LLMs)76

suffer many challenges. They require significant resources even to run and far77

more resources to fine-tune. Furthermore, VLMs usually are not very good at the78

details since they are trained to provide a rather generic “caption” for the image79

or video. They lack any specific mechanism to follow the activities/interactions of80

individual objects. For example, the image in Fig. 1(b) will likely be described as81

“several” cars on the street, and if the VLM is fine-tuned to recognize accidents,82
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it will probably say that two (or even “some”) cars are involved in an accident.83

This lack of specificity not only diminishes the value of the description but also84

makes fine-tuning difficult since an accurate description would need to point out85

which cars are involved in what type of activity. Segmentation and masking of86

the images have been used as potential ways to learn more details of what exists87

in the image [9], but that makes VLMs even more heavy-duty and less accurate.88

This paper discusses a fine-tuning mechanism that utilizes Traditional Com-89

puter Vision (TCV) for object (and, if necessary, pose) detection, along with90

tracking and logical reasoning to allow the output of the fined-tuned VLM to be91

associated with specific objects. For object/pose detection, we use YOLOv8 [32]92

as it can work in real-time. We also track the objects to maintain their persis-93

tent IDs. Note that when a VLM is fine-tuned to recognize a set of N classes94

of activities, its output is generally limited to only those N classes. For each95

of these, we define a much simpler proxy activity that can be detected by TCV96

easily, ideally, based on basic parameters such as object type, size, location, sep-97

aration, movement, etc. For example, the proxy activity for a rear-end accident98

is a car behind another car with a minimal distance between them. Similarly,99

a rather complex VLM-recognized activity of two people assembling some part100

in a factory may be characterized by the proxy activity of two people standing101

close together. (This assumes that the same proxy activity describes no other102

actual activity among the other N − 1 classes; if not, we need to include some103

more detail.)104

We take the unique approach of fine-tuning the same VLM for two related105

sets of tasks. For example, for the road traffic dataset introduced in section 4.2,106

we can identify task T1 (performed by VLM1) as recording different types of107

accidents. Similarly, we can identify task T2 (performed by VLM2) as recording108

the relative movements of vehicles. Each task Ti involves the classification across109

a set of Ni activities Aij , (j = 1, 2, ..., Ni), as depicted in Table 1. Activity Aij110

in task Ti corresponds to a class that VLMi is fine-tuned to recognize.111

For each activity Aij , we identify a distinct proxy activity A′
ij that can be112

easily recognized using TCV. We now have three distinct possibilities for de-113

tecting deficiencies in the VLM outputs and improving them via further focused114

fine-tuning. One is the consistency between the class identified by the VLM1115

output and the class identified via TCV-recognized proxy activity for task T1.116

Similarly, another possibility is the consistency between the class identified by117

the VLM2 output and the class identified by TCV-recognized proxy activity for118

task T2. The third one is the compatibility between the classes identified by the119

two VLMs. The compatibility relationships are derived based on the knowledge120

of the two tasks; for example, for a rear-end accident to happen, the two vehi-121

cles must be moving in the same direction close together in the same lane. Such122

checks are helpful for fine-tuning and providing justifications at inference time,123

as discussed later.124

2.2 Integrating Logic Reasoning with Computer Vision125

Given the recognition of objects and their movements via TCV from video126

frames, we can define higher-level concepts as reusable functions using logic.127



4 Anonymous Authors, PaperID 5433

As a simple example, consider the definition of a function such as “following(V1,128

V2)” that asserts that vehicle V1 is following vehicle V2. The truth value of129

this assertion for any given pair of vehicles will be established (i.e., the function130

will be “grounded”) by concluding from a sequence of frames of some minimum131

length that V1 is right behind V2. These definitions are needed only once and132

can be invoked in other parts of the logic “program” as needed. The reasoning133

generally also requires additional “theories” depending on the relevant physics134

either directly (e.g., Newton’s Laws of motion) or in simplified form if needed. In135

addition, we surely need “theories” of basic arithmetic/comparison operations136

and any qualitative relationships we introduce, such as behind, ahead, etc.137

(a) (b)

Fig. 1: TU DAT dataset (a) car hit by another car from the side, and (b) shows
a rear-end accident scenario.

We describe all such Rules of Inference (RoIs) and groundings in binary138

logic form for reasoning purposes. For example, if an object travels at speed s139

for time τ , the distance traveled d can be expressed as d = sτ being true. Such140

a representation allows the use of Boolean satisfiability modulo theory (SMT)141

based tools, the best known of them being Z3 [25] and YICES [12]. SMT tools can142

routinely solve significant practical problems despite the underlying NP-hardness143

and undecidability results, primarily because practical issues often have a lot of144

structure that can be exploited and further evidenced by their extensive use in145

many domains [1].146

Unlike neuro-symbolic AI techniques [11, 19], explicit logic-based modeling147

does not require additional training. However, it does require putting together148

necessary assertions, which in this case concern consistency and compatibility149

between outputs of VLMs and TCV.150

2.3 Related Work151

Reasoning using VLM/LLM outputs has been extensively discussed in the lit-152

erature [9, 26, 37, 38], although since VLMs/LLMs are simply large transformer153

models, the claims of reasoning ability can be questionable [15, 36]. The an-154

swers provided by a VLM/LLM entirely depend on the veracity of the extensive155
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data used for pretraining and the limitations of the data used for fine-tuning.156

Because of this range and intentional randomness in LLM outputs (controlled157

by the temperature parameter), reasoning that directly uses the outputs of the158

VLM/LLM is different from the deductive reasoning proposed here, governed by159

explicitly specified Rules of Inference (RoIs). However, the RoIs can only estab-160

lish consistency and sanity rather than ensure the correctness of VLM outputs.161

It is possible to explore the formulation of these RoIs based on the observed162

relationships similar to what inductive or analogical reasoning attempts to do;163

however, that is out of the scope of the current paper.164

Ref [36] surveys “reasoning abilities” of multimodal LLMs. It discusses many165

Q&A datasets to test LLMs/VLMs in various domains and the genealogy of166

many LLMs/VLMs. LLMs generally provide a limited context window that167

maintains the previous Q&A in the conversation, which could help make better168

later predictions in the dialog. It is also possible to keep the knowledge externally169

and use it for later prompts [39]. Ref [9] introduces 3-stage LLM-based reason-170

ing: see, think, and confirm. The see module uses a scene parser to detect all the171

candidate objects (concepts) in the image. Using an image captioner, the think172

module generates textual descriptions of relationships/concepts semantically re-173

lated to the query. This description is given to LLM to answer the question. The174

confirm module requires the LLM to continue to generate the answer’s support-175

ing rationale (or justification) and verify them with a cross-modality classifier.176

The generated rationale is added back to the prompting context, begins a new177

think-confirm process, and iterates until the answer predictions in two consec-178

utive iterations are consistent. A similar approach (observe, think, rethink) is179

described in ref [38]. The Chain of Thought (COT) [37] uses prompting to teach180

LLMs about formulating intermediate assertions to help them find the answer181

to a complex question. Ref [15] provides another survey of reasoning by LLMs182

(including multiple variants of COT) and argues why LLMs are still incapable183

of reasoning.184

In the space of TCV and, more generally, deep learning, the issue of reasoning185

is often described as neuro-symbolic AI [11, 13, 19, 31]; however, it is mainly in186

the form of indirectly enforcing the constraints in neural net operations or loss187

function. For example, the popular Logic Tensor Networks (LTN) [7] enforces188

logic constraints implicitly and approximately by using differentiable extensions189

of Boolean operations [17]) to avoid the problem of exploding or vanishing gradi-190

ents. Explicit logic reasoning approaches are relatively sparsely explored [5, 29].191

Ref [27, 28] attempts to use explicit reasoning for accident and driver behavior192

characterization.193

Explainable AI has seen a burgeoning amount of literature [4]. Although194

much of it concerns explaining the AI’s decisions, the focus has now expanded195

to the more important problem of justifiability of those decisions [2, 14]. Our196

method supports justifiability in a simple way.197
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Fig. 2: Application Directed Fine-tuning of VLMs

3 Integrating Deep Learning with Logic Reasoning198

The proposed fine-tuning approach is divided into two sections, (i) The Fine-199

Tuning Section and (ii) The Fine-Tuning Prep Section, as illustrated in Fig. 2.200

We explain it specifically for the traffic scenario, but the approach generally201

applies and can easily use multiple VLMs rather than the two shown. The fine-202

tuned version of each VLM would classify the input image/video into one of the203

defined number of classes. The description of each class concerns some detail of204

the type of events that VLM is intended to recognize. For example, suppose the205

events of interest relate to collision accidents. In that case, the individual classes206

may correspond to descriptions like rear-end accident between car and truck,207

head-on collision between vehicles, motorcycle hit from the side by a car, etc.208

Similarly, a VLM that concerns vehicular movements may use class descriptions209

such as a vehicle following another in the same lane, a car driving next to another,210

etc.211

Fine-Tuning Section: Initially, both VLMs are fine-tuned using a set of ran-212

domly selected labeled inputs that could be images or videos, depending on the213

type of VLM used. We chop longer videos into concise ones so that each video214

focuses on only one class of interactions as far as possible. We label (or caption)215

these video segments according to the requirements of the specific VLM used.216

For image-based VLMs, we label each image in the video segment identically.217

We divide the entire video set into test and fine-tuning sets randomly. Each test218

video (numbered as n = 0, 1, 2, ...) is passed through both VLMs, which provide219

probabilities for each defined class. If the results do not assign a significant prob-220

ability to any of the tracked events, we move on to the next video but retain this221

video in the set as it may be helpful later when the VLMs are better tuned.222

Fine-Tuning Prep Section: This section mainly focuses on TCV, where we223

run an object detector (e.g., YOLOv8) on the video to identify and track signifi-224

cant objects (e.g., cars, motorbikes, pedestrians, etc.). This allows us to associate225
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object IDs with VLM output (through the proxy activity mechanism discussed226

in section 2.1). These can be encoded using logic as assertions for direct rea-227

soning. The RoIs further assist these assertions to enable consistency checking,228

shown as a “logic rules database.”229

The goal now is to check if the activities detected (represented by class labels)230

by the two VLMs are mutually consistent. The RoIs for mutual consistency must231

be pre-established and become part of the logic rules database. For example, the232

two descriptions are consistent if VLM1 indicates a rear-end accident and VLM2233

indicates movement in the same lane and direction. The two are inconsistent if234

VLM2 indicates movements in different lanes or opposite directions. The rigor235

with which the consistency can be checked depends on how detailed information236

we get from VLMs and our ability to associate correct object IDs with them.237

We could thus formulate Conjunctive Normal Form (CNF) assertions based on238

the VLM output and check the consistency according to the specified RoIs. In239

case of inconsistency, we identify a new video from the fine-tuning set with the240

same labels and use that for fine-tuning both VLMs. Usually, we would want to241

evaluate the inconsistency and subsequent directed fine-tuning in batches, with242

batch size being a hyperparameter of the algorithm. The fine-tuning process can243

be repeated until suitable stopping criteria are reached.244

4 Experimental Evaluation245

4.1 VLMs Used For Evaluation246

For evaluation, we used one VLM with images (Minigpt-4) and two with videos247

(X-Clip and VideoMAE). MiniGPT-4 uses BLIP-2 (Bootstrapping Language-248

Image Pre-training) [20], which defines two trainable layers to align a frozen249

vision transformer model with a frozen LLM model. MiniGPT-4 uses the pre-250

trained vision component of BLIP-2 and adds a single projection layer to align251

the encoded visual features with frozen Vicuna LLM. Minigpt-4 is quite pop-252

ular in academic environments because it can be fine-tuned on modest GPU253

machines.254

X-CLIP [23] is designed for video-text retrieval and generates multi-grained255

visual and textual representations. It then uses multi-grained contrast of fea-256

tures (i.e., video-sentence, video-word, sentence-frame, and frame-word) to ob-257

tain multi-grained similarity scores, vectors, and matrices. It dynamically con-258

siders the importance of each frame in the video and each word in the sentence259

so that the impact of unimportant words and unnecessary frames on retrieval260

performance is reduced.261

VideoMAE [33, 35] uses a self-supervised training mechanism with videos.262

It randomly selects a sequence of frames in a time window. These are divided263

into a 16x16 grid in the image plane. This provides so-called “tubes”, or grid264

elements extended in the time dimension. The grid elements are embedded in the265

token space using the self-attention mechanism in space and time. The tubes are266

heavily masked, and the token representation is used to train an autoencoder,267

hence the name Video Masked AutoEncoder (VideoMAE).268
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4.2 Data Sets Used269

Description of Datasets: The first dataset we used, called TU DAT [18],270

concerns road traffic and contains diverse accident types, weather conditions,271

and videos collected in challenging environments. Fig. 1 (a) shows a car hit by272

another car from the side, and (b) shows a rear-end accident scenario.273

Table 1: Description of Classes used for TU DAT Dataset
Class# Classes in VLM1 Classes in VLM2
Class1 Car hit by another car from behind Cars moving in same direction
Class2 Car hit by another car from side Cars moving in opposite direction
Class3 Car hit by another car from front Cars moving next to one another
Class4 Car hits a static object Cars moving behind one another
Class5 Motorcycle hits a pedestrian Cars moving perpendicular to each other
Class6 Traffic videos Car & motorcycle moving one behind another
Class7 Not defined Car & motorcycle moving next to one another
Class8 Not defined Pedestrians walking

Table 2: Description of Classes used for Taekwondo Dataset
Class# Classes in VLM1 Classes in VLM2
Class1 Left leg still, right leg stands still Left arms out, right arms out
Class2 Left leg still, right leg moving forward Left arms out, right arms folded
Class3 Left leg still, Right leg moving backward Left arms folded, right arms out
Class4 Right leg still, Left leg moving forward Left arms folded, right arms folded
Class5 Right leg still, Left leg moving backward Left arms on the head, right arms folded
Class6 Left leg moves forward, Right leg backward Right arms on the head, left arms folded
Class7 Right leg moves forward, Left leg backward Not defined

(a) (b)

Fig. 3: Green belt movement pat-
terns in Taekwondo

Our second dataset is the Taekwondo274

dataset, explicitly developed with data on275

movements performed by Taekwondo ath-276

letes. We collect videos of students at277

Darimar Martial Arts, Columbus, Ohio.278

The acquired dataset comprises various279

Taekwondo patterns, each symbolizing a280

distinct movement executed by an athlete281

for a specific belt. The patterns include282

the following belt colors: white, yellow, or-283

ange, green, and black. Understanding the284

movement patterns is a crucial component285

of Taekwondo training, as explained in the Taekwondo America student man-286

ual [3]. We have a collection of 35 videos in total, which feature either a single287

student or multiple students performing the movements in sequence for each288

belt pattern. Fig. 3 (a) shows the walking stance low block, and (b) shows the289

walking stance reverse punch of a student in a dark green belt pattern.290

Description of Classes Used to Fine-Tune VLMs: The TU DAT dataset291

contains several accident scenarios in road traffic, forming the classes for fine-292

tuning any VLM. Since our proposed method includes fine-tuning two VLMs,293
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the videos in the TU DAT dataset have been categorized into modeling accident294

scenarios for VLM1 and recognizing the relative position/movements of vehicles295

for VLM2. The description of classes used in fine-tuning VLM1 and VLM2 on296

TU DAT are shown in Table 1. Although the table shows courses with the same297

number side by side for VLM1 and VLM2, the numbering does not reflect any298

relationship between them. Instead, any relationship will be captured via the299

logic assertions used for consistency.300

For the taekwondo dataset, VLM1 is fine-tuned to recognize the leg move-301

ments of the students, while VLM2 is fine-tuned to identify the students’ arm302

movements. The description of classes used in fine-tuning VLM1 and VLM2 on303

the Taekwondo dataset are shown in Table 2. Again, the same class number for304

VLM1 and VLM2 is not intended to reflect any relationship between them.305

4.3 Experimental Results306

This section evaluates our proposed application-directed fine-tuning framework307

on the collected datasets discussed in Section 4.2. The following metrics de-308

termine the effectiveness of our framework: (a) Fine-tuning (FT) time of both309

VLMs, (b) Accuracy of inference, (c) Inference time, and (d) Justifiability time.310

The experiments were performed on a server with two NVIDIA RTX A6000311

GPUs, each equipped with 10752 CUDA cores and 48GB GDRR6 memory.312

(a) (b)

Fig. 4: FT Time for XCLIP (TU DAT Dataset) (a) VLM1, (b)VLM2.

Calculating the accuracy involves assessing inconsistencies between the out-313

puts of the two VLMs and the logical reasoning tool. We start with a base-line314

fine-tuning of both VLMs, which consists of the following steps: (1) select few315

videos from each class in the training set, then (2) fine-tune both VLM1 and316

VLM2 on this subset of videos; (3) run the test videos in batches on the fine-317

tuned VLMs; and (4) record the inconsistency between the outputs of both VLMs318

and the reasoning tool. Next, we do further fine-tuning using both undirected319

and directed methods. Our directed fine-tuning intelligently selects 20 videos320

from the classes that exhibit inconsistencies between the outputs of both VLMs321

and the reasoning tool. The choice of 20 videos is somewhat arbitrary and can322
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(a) (b)

Fig. 5: FT Time for Video-MAE (TU DAT Dataset) (a) VLM1, (b)VLM2.

(a) (b)

Fig. 6: FT Time for MiniGPT4 (TU DAT Dataset) (a) VLM1, (b)VLM2.

be chosen adaptively based on the misclassifications, although this aspect has323

not been investigated here. To make a fair comparison, we execute the loop four324

times for both directed and undirected cases, each using 20 videos. We stopped325

at four iterations since the improvement in accuracy appeared to be saturated326

after that.327

Fine-Tuning Accuracy: Fig. 4, 5 and 6 show the results of fine-tuning328

both VLM1 and VLM2 on the TU DAT dataset using XCLIP, VideoMAE and329

MiniGPT4 respectively. Similarly, Fig. 7, 8 and 9 shows the results of fine-tuning330

(a) (b)

Fig. 7: FT Time for XCLIP (Taekwondo Dataset) (a) VLM1, (b)VLM2.
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(a) (b)

Fig. 8: FT Time for Video-MAE (Taekwondo Dataset) (a) VLM1, (b)VLM2.

(a) (b)

Fig. 9: FT Time for MiniGPT4 (Taekwondo Dataset) (a) VLM1, (b)VLM2.

both VLM1 and VLM2 on the Taekwondo dataset using XCLIP, VideoMAE and331

MiniGPT4 respectively. In all these figures, the x-axis indicates the acronyms of332

classes utilized by VLM1 and VLM2, with their descriptions found in Section 4,333

while the y-axis represents the accuracy. It is clear that our directed fine-tuning334

surpasses undirected fine-tuning methods in all cases by a very significant margin335

of roughly 20 percentage points. Note that the substantial improvement persists336

for two very different types of videos (road traffic vs. taekwondo), confirming337

that the improvement is not tied to the video characteristics.338

(a) (b)

Fig. 10: Overall per-epoch prep and FT Time for (a) Undirected Fine-tuning and
(b) Directed Fine-tuning
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(a) Inference & justification time (b) Finding key objects in the scene

Fig. 11

VLM1 Output: Matching Caption: Car hit by another car from behind
VLM2 Output: Matching Caption: Cars moving next to one another

Consistency Check: NO - VLM1 output is inconsistent with VLM2 output

Retrieve Videos with labels: Car hit by another car from behind, Cars moving next to one
another, Cars moving behind one another

Fig. 12: Directed Fine-tuning prep with XCLIP on TU DAT Dataset

car1 and car2 moving one behind another
car1, car2, car3 & car4 are traveling in same lane
car1 and car2 are following very close to each
other from behind
car1 and car9 are traveling in the opposite lane
car7 is parked and not moving
car5, car8, & car 9 are traveling in same lane

Table 3: Determine proxy activities

A Detailed Fine-Tuning Exam-339

ple: In this section, we present an340

example of a rear-end accident sce-341

nario as shown in Fig. 1 (b) from342

the TU DAT dataset, demonstrating343

the functionality of our directed fine-344

tuning approach.345

Variables: car1, car2.., car9 are unbound integers
Functions: Boolean, each with one Integer argument
move behind(), move very close(), move opp dirn()
move same dirn() car hit from behind()
Groundings:
move behind(car1) ∧ move behind(car2)
move very close(car1) ∧ move very close(car2)
move same dirn(car1) ∧ move same dirn(car2)
move same dirn(car5) ∧ move same dirn(car8) ∧ move same-
dirn(car9)
move opp dirn(car1) ∧ move opp dirn(car9)
move behind(car1) ∧ move behind(car2) ∧ move very close(car1)
∧ move very close(car2) =⇒ car hit from behind (car1)

Table 4: Assertions for Reasoning

In this example, we346

apply directed fine-tuning347

on XCLIP. After the348

initial fine-tuning stage,349

VLM1 and VLM2 yield350

the captions as shown351

in the top two lines in352

Fig. 12. The next step is353

to identify the key ob-354

jects in the scene using355

YOLOv8, as shown in356

Fig. 11 (b). On the basis of the identified key objects, we determine the proxy357

activities associated with various objects in the scene, as illustrated in Table 3.358

The assertions derived from the object relationships established in the previous359

step are shown in Table 4. These assertions substantiate the possibility of a sce-360

nario of a car being hit by another car from behind, whereas the VLM2 output361

indicates that vehicles are moving adjacently. As a result, the output of VLMs362

and the logical reasoning tool are inconsistent; therefore, we select and retrieve363

the videos with the labels as depicted in Fig. 12 for additional fine-tuning of364

both VLMs.365
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Fine-Tuning Time: We also compare the time required for both directed366

and undirected fine-tuning approaches for all three VLMs under consideration.367

As stated earlier, we use four iterations of fine-tuning for both directed and368

undirected cases, each time using 20 videos. For each iteration, the time spent369

consists of two parts, shown by the dotted boxes in Fig. 2.370

1. Actual fine-tuning time, reported as average per epoch (over 500 epochs).371

2. Preparation time, reported as average per epoch. For the undirected FT, it372

is the time to retrieve 20 videos from the disk (randomly in this case). For373

directed FT, it also includes the overhead of running YOLO, querying VLM1374

and VLM2, generating assertions, and using them for consistency checking.375

Figs. 10 (a) and (b) show the average per-epoch fine-tuning and fine-tuning prep376

time, respectively, for both undirected and directed cases. As expected, the fine-377

tuning time is almost identical in both cases and is in the ∼10-12 sec range. The378

prep time is much shorter; a significant piece is the time to retrieve and load379

videos from the disk. The time taken by other pieces of directed fine-tuning is380

relatively modest.381

Inference and Justification Time: The fine-tuning prep section in Fig. 2 can382

also be viewed as a mechanism to augment inferencing with justifiability, which383

is crucial with Blackbox AI models. For this, we take out the fine-tuning section384

during inferencing (thus breaking the loop) but retain other parts. In this case,385

each inference will also be accompanied with the following information:386

1. Output justified by alluding to the consistency between VLMs, and across387

VLMs and TCV-based proxy activity detection.388

2. Output marked as faulty along with a reason why it is considered question-389

able.390

Fig. 11 displays the inference and justifiability time for all 3 VLMs on both391

datasets. Note that the justifiability time differs from the fine-tuning prep time392

reported above since we no longer have the significant overhead of retrieving393

videos from disk for fine-tuning. It is seen that the justifiability time is about the394

same as the inference time. This should be reasonable for critical applications; for395

others, we may exclude the justifiability at inferencing or run it only occasionally396

as a sanity check.397

Catastrophic Forgetting: Catastrophic forgetting (CF) is a phenomenon398

where a model loses previously acquired knowledge while learning new infor-399

mation [22]. To understand this phenomenon in the context of our fine-tuning,400

we conducted a small study as follows: We first evaluated the ability of the401

original XCLIP (say, version 0) to identify VLM1 classes, specifically accidents.402

It achieved an average accuracy of approximately 36% in recognizing accident403

classes. We then fine-tuned XCLIP on accident videos, thereby creating, say,404

version 1. The accuracy of accident recognition for version 1 increased to 44%.405
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Next, we fine-tuned version 1 to recognize the relative movements of VLM2 ve-406

hicle classes to create version 2. We then evaluated version 2’s ability to identify407

accident classes, resulting in a reduced accuracy of 32%, lower than version 0.408

This demonstrates the CF phenomenon and justifies the creation of two distinct409

fine-tuned versions (VLM1 and VLM2) for the two tasks instead of using just410

one and evaluating its consistency with the objects identified by the TCV part.411

5 Conclusions and Discussion412

In this paper, we propose a novel fine-tuning mechanism for VLMs. This mech-413

anism combines traditional computer vision (TCV) to recognize details with414

explicit logical reasoning to improve the performance of emerging vision LLMs415

(VLMs). The mechanism substantially reduces the effort and resource needs416

of fine-tuning while providing considerably higher accuracy and a justification417

mechanism that can continue to be used at inference time.418

In particular, we demonstrated that identifying the objects and proxy activ-419

ities in the video stream can formulate a simple yet powerful way of detecting420

the areas where the fine-tuned VLM is deficient. This allows us to conduct in-421

formed fine-tuning that can be used with both image and video-based VLMs.422

We demonstrated that the proposed mechanism increases the accuracy by about423

20 percentage points in all cases compared to the one achievable via undirected424

fine-tuning.425

The proposed mechanism is quite general, as it can be applied to any VLM426

and dataset. It can also be extended in multiple directions:427

1. The proxy activities could be more complex to ensure separation between428

different classes recognized by the fine-tuned VLMs and to enrich opportu-429

nities for accuracy/consistency checking.430

2. The mechanism can be generalized to more than two VLMs to capture many431

activities and events.432

3. Since the TCV algorithms can make mistakes, we improve robustness by ex-433

ploiting conditions like the smoothness of change across video frames (e.g.,434

a car identified as a truck in some frames or its movements not conform-435

ing to the feasible rate of change). Such enhancements also support better436

justifications at inference time at the cost of higher processing time.437

It may be noted that detecting more complex proxy activities may require438

us to go beyond SMT-based reasoning and bring in issues of temporal ordering,439

real-time, and ongoing processes in the reasoning itself. This can be done through440

temporal extensions [16], real-time extensions [8], and process extensions [6, 10,441

34]. Such extensions have been used in ref [27,28] for recognizing more complex442

activities. Other potential extensions include detecting and correcting mistakes443

in the TCV by exploiting continuity and smoothness constraints in what can444

happen over successive frames. More generally, modifying VLM output through445

NLP techniques to inject the identified object IDs is possible.446

Dataset Collection: We certify that our taekwondo dataset was collected447

with proper permissions.448
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