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Social Media Driven Big Data Analysis for Disaster
Situation Awareness: A Tutorial

Amitangshu Pal∗, Junbo Wang†, Yilang Wu‡, Krishna Kant§, Zhi Liu¶, Kento Sato‖

Abstract—Situational awareness tries to grasp the important
events and circumstances in the physical world through sensing,
communication, and reasoning. Tracking the evolution of chang-
ing situations is an essential part of this awareness and is crucial
for providing appropriate resources and help during disasters.
Social media, particularly Twitter, is playing an increasing role
in this process in recent years. However, extracting intelligence
from the available data involves several challenges, including
(a) filtering out large amounts of irrelevant data, (b) fusion
of heterogeneous data generated by the social media and other
sources, and (c) working with partially geo-tagged social media
data in order to deduce the needs of the affected people. Spatio-
temporal analysis of the data plays a key role in understanding
the situation, but is available only sparsely because only a small
fraction of people post relevant text and of those very few enable
location tracking. In this paper, we provide a comprehensive
survey on data analytics to assess situational awareness from
social media big data.

Index Terms—Spatial big data analytics; crowd big data;
disaster management; situation awareness

I. Introduction

Situational awareness is crucial in a disaster scenario and is
often difficult to come by due to the challenges in obtaining
the necessary information in a coherent manner and organizing
it. Part of the difficulty arises due to patchy availability and
overloading of the communications networks; however, it is
often unclear what information is most relevant and how it
should be gathered. Since disasters can continue to evolve over
many days, tracking situational awareness becomes even more
challenging. Lately, social media has emerged as a primary
means for informing the ground realities and expressing the
needs by people caught in the disasters. However, only a small
fraction of people may post about their needs and of those only
a tiny fraction usually enables location tracking due to privacy
concerns.

Junbo Wang is the corresponding author.
Copyright (c) 2015 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

∗Computer Science and Engineering, Indian Institute of Technology Kan-
pur, Kanpur, India, Email: amitangshu@cse.iitk.ac.in
†Guangdong Provincial Key Laboratory of Intelligent Transportation System,
School of Intelligent Systems Engineering, Sun Yat-sen University, China,
Email: wangjb33@mail.sysu.edu.cn
‡ PKUtech Co.,Ltd., Tokyo, Email: y-wu@ieee.org
§Computer and Information Science, Temple University, Philadelphia, USA,
Email: kkant@temple.edu
¶ School of Informatics and Engineering, The University of Electro-
Communications, Tokyo, Japan, Email: Liu@ieee.org
‖ RIKEN Center for Computational Science (R-CCS) , Japan, Email:
kento.sato@riken.jp

Twitter has established itself as the disaster communication
vehicle of choice due to its modest networking requirements,
ease of use, and brevity. For example, after the 2011 Japanese
earthquake there were more than 5,500 tweets per second
after the disaster. Twitter has been used for a wide variety
of disaster scenarios, including the three major Hurricanes in
2017, namely Harvey, Maria and Irma that affected Caribbean
and US East coast [1], 2019 Pan-European Floods [2], and
2019 US midwestern floods [3], and COVID19 [4] [5].

Fig. 1(a) shows the distribution of earthquake related tweets
(with keywords ‘earthquake’, and ‘jishin’ which means disas-
ter in Japanese) in the Kumamoto Earthquake that struck at
Kumamoto City of Kumamoto Prefecture in Kyushu Region,
Japan in 2016. The density of these keywords shows close
correlation with the official shake map of the region. On the
other hand, Fig. 1(b) shows the power outage related geo-
tagged tweets from New York city during Hurricane Sandy in
2012. The regions of Lower Manhattan from Madison Square
to the tip of the island was hit the hardest. The distribution
of the such disaster related tweets was well correlated with
the actual areas of damage, which shows the usefulness of the
tweet analysis.

In addition to social media posts, many other types of
data is often also available and can be exploited to gain
further insights into both the impacts of the disaster on the
physical infrastructure (e.g., damaged transportation routes
and assets, damage to power lines/substations, damage to
wired/wireless network assets, etc.) and the needs of people
affected by it. The sources of such data include various utility
companies and service providers. Extracting intelligence from
such heterogeneous data involves a lot of challenges including
(a) filtering out irrelevant data, (b) fusion of heterogeneous
data, (c) dealing with partially geo-tagged social media data,
(d) lightweight data analysis mechanisms for near real-time
response, and (e) working with evolving situations. In this
paper, we provide a comprehensive survey of these and related
issues.

While these challenges apply in general to the processing
of multimodal data, there are many aspects that are unique
to the disaster applications. First, it is important to quickly
and continuously process the enormous amount of data being
generated during disasters, so that the help can be dispatched
expeditiously. A related issue is the continuous evolution of
the disaster, which must be reflected in the analysis. Second,
we can expect that the relevant and useful posts are likely
to form a very tiny fraction of all the posts, and even
fewer will have location information. However, we expect a
temporal and spatial “stickiness” to the application specific



(a) (b)
Fig. 1. Kumamoto Earthquake Tweets (red: relevant, green: others). (b) Power outage tweets in Hurricane Sandy (dark blue: relevant, light blue: others)

posts, particularly those concerning human condition. For
example, if a person reports need for food, water, medical
care, etc., it is almost certain that (a) the need will persist
for some time (even if there is no further post about it),
and (b) people in the same or nearby areas have the same
need. A suitable modeling of this stickiness can enable reliable
conclusions in spite of the sparseness of the data. Finally, there
are numerous disaster scenarios, each with unique situation
awareness needs, however, these can be divided into a small
number of categories. One goal of this paper is to provide
such a categorization of the disaster applications and review
relevant literature on situation awareness for each.

The paper is organized as follows. Section II discusses using
social media for emergency situational awareness. Section III
describes the spatial big data analysis. Section IV summarizes
the applications in disaster scenarios, and Section V discusses
challenges and possible solutions, which can be supplemental
techniques to support big data analytics in emergency scenar-
ios. We have demonstrated an application of big data analysis
in section VI through a case study. Some future directions
are summarized in section VII. The paper is concluded in
section VIII.

II. Using SocialMedia for Disaster Situational Awareness

Recent years have seen an increased interest by the research
community in using twitter data for situational awareness
in the emergency and disaster contexts. Event detection is
arguably the most active subtopic, where the objective is to
detect new events from a real-time twitter stream. A typical
approach for event detection is to define one or a few keywords
(e.g., earthquake) of interest and to track if there are temporal
bursts of the keywords’ used in the tweets [6]. Extensions of
this approach include general-purpose detection systems that
track a large number of keywords [7], phrases [8] or detect
emergence of clusters of similar tweets [9].

Once an event is detected, another commonly addressed
research challenge is using twitter data to gain situational
awareness. Considering the state of the art in natural language
processing and data analytics, it is still not possible to build a
fully automated system that could provide actionable knowl-
edge to the responders. Instead, the emphasis has been on
summarizing and visualizing disaster-related tweets to help hu-
man responders to quickly grasp the vast amounts of generated
information. Representative examples are Senseplace2 [10], a

visual analytics system that allows an operator to enter a query
(in a form of a term or a hashtag), look at the map to observe
where is the keyword common, click on a specific location,
and view individual ranked tweets from the selected location,
and Twitinfo [11], a tool that allows an operator to browse a
large collection of tweets using a timeline-based display, drill
down to sub-events, and explore via geolocation, sentiment,
and popular URLs. More advanced visual analytics systems
also include capability to cluster disaster-related tweets [12].
There are also summarization systems that have capability
to classify tweets into some of the predefined categories
[13]. As a representative system of this type, in [14] the
authors categorize disaster-related tweets into one of a few
predefined categories (e.g., personal, informative, other) and
subtypes (e.g., caution, casualties) using a classifier which
uses text features such as unigrams or bigrams and which
is trained on a manually labeled data set of historical tweets.
In addition to these there are systems that integrate data from
multiple sources, such as Ushahidi (www. ushahidi.com) [15],
a platform that leverages Web 2.0 technologies to integrate
data from phones, Web applications, email, and social media
sites to provide publicly available crisis maps.

Other social media platforms such as Facebook, Wikipedia,
Flickr etc. are also used in different disaster scenarios. After
the Sichuan earthquake in 2008, the use of Tianya (a popular
online forum in China) is studied as a forum for online discus-
sions on earthquake-related topics [16]. Reference [17] have
studied the peer-to-peer communication from a variety of other
platforms especially Facebook after the Virginia Shooting in
2007, and southern California wildfires in 2007 [18]. During
the 2013 Colorado Floods, different flood-related communica-
tions in Facebook and Twitter are examined in [19], [20].

More recently, researchers started paying more attention to
the spatial aspect of events [21]. For example, [22] considers
burstiness of term “earthquake” in both time and space to
detect spatial clusters of tweets that are candidates for an earth-
quake event. The unsupervised approach for event detection
can be further enhanced by adding a classifier that is trained
on previous events to recognize which clusters are events and
which are not [23]. Big data analysis from the temporal-spatial
point of view can assist governments or rescue teams grasp
the distribution of the situation in the disaster area, predict the
evolution of situations in temporal-spatial space, and find the
correlated features behind the data.
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Taxonomy of Spatial big data analysis

Spatial prediction (III-A)

Contextual Information based (III-A1)

Model-based (III-A1)

Spatial Heterogeneity (III-A2)

Spatial Clustering (III-B)

Partition-based (III-B1)

Hierarchical-based (III-B2)

Density-based (III-B3)

Evolving clustering (III-B4)

Spatial Outlier Detection (III-C)

Graphic-based (III-C)

Statistics-based (III-C)

Spatial Co-location Patterns (III-D)

Spatial Statistics based (III-D)

Data Mining based (III-D)

Fig. 2. Characterization of big data analysis for situation awareness

☓

❓❓

Spatial Outlier

Spatial Co-locationSpatial Clustering

Spatial Prediction

Fig. 3. Four major types of Spatial Analytics.

When processing and analyzing such social media data
for event detection and situational awareness, one should be
aware of a multitude of challenges. One issue lies in varying
credibility, reliability, and quality of twitter data. For example,
geotagging of tweets is nontrivial because of the uncertainties
in their location and timing [24]. Only a small fraction of
tweets typically have an accurate GPS-quality location and
there could be a significant and unknown lag between an event
occurrence and its mention. Another challenge is that there
are significant differences in the dynamics, spatio-temporal
extent, and impact of different disasters, coupled with the ever
changing use of social networks such as twitter. As such, one
should be cognizant of these issues when performing titter data
analysis and transferring knowledge from previous disasters.

III. Spatial Big Data Analytics for Situational Awareness

Spatial analytics studies the relationships between the data
and the location where the data is generated or is intended
for. Extracting interesting and useful patterns from the spatial
information of data is important and yet difficult due to the
complexity of spatial data types, spatial relations, and spatial
auto-correlations [25]. In this section we discuss four major
aspects in spatial analytics [26], namely spatial prediction,
spatial clustering, spatial outlier detection, and spatial co-
location pattern discovery. The taxonomy and structure of this
section is briefly shown in Fig. 2; in the following we discuss
each category in details.

A. Spatial prediction

Spatial prediction models can be used to support crime
analysis, network planning, and services after natural dis-
asters such as fires, floods, droughts, plant diseases, and
earthquakes. Consider, for example, n points with locations

denoted as s1, s2, ..., sn, and a set of explanatory features
X = [x(s1), x(s2), ..., x(si), ..., x(sn)]T at these locations. Let
Y = [y(s1), y(s2), ..., y(si), ..., y(sn)]T denote the “situation” at
these points, which refers to the learned function Y = f (X)
representing a quantity of interest. The function f (X) is usually
known only in certain locations, and we are interested in
predicting it for others. This is illustrated in Fig. 3. Here,
we want to predict the situation at the location of the red
question mark based on the surrounding situations and the
spatial correlation among the data.

Spatial prediction models can be sub-divided into two cat-
egories, i.e., spatial auto-correlation (dependency) and spatial
heterogeneity (non-dependency) models.

1) Spatial auto-correlation: Spatial auto-correlation fol-
lows the first law of geography, i.e., “everything is related
to everything else, but near things are more related than
distant things”. For example, closer locations are likely to
have similar situations both in terms of the needs of the
people and conditions (e.g., wireless signal strength). Spatial
auto-correlation can be further divided into two kinds of
approaches, i.e., based on spatial contextual information and
based on prediction models [27].

The first approach is through augmentation of the training
data with additional spatial contextual information that refers
to spatial relationships such as neighborhood of the input
data. The relationships can be learned based on traditional
machine learning models, e.g., SVM or decision tree. The
spatial contextual information can be grasped directly from
location information [28], such as distance or direction, or
can be collected from multi-source data [29] [30]. The biggest
benefit of this approach is that many traditional non-spatial
prediction/learning models can be used, which is much more
convenient for researchers. However, the generation of proper
spatial contextual features and the integration of spatial and
non-spatial features into machine learning models can be
nontrivial. Instead of generating spatial contextual information,
some approaches directly integrate the spatial relationships in
the prediction model; two such approaches are Markov random
field based models [31] and Gaussian process based models
[32].

Markov random field (MRF) represents as an undirected
graph model of random variables, which have a Markov
property. The formal definition is given as follows. Given
an undirected graph G = (V, E) and a random variable Xu
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associated with node u ∈ V , the random variables form a MRF
with respect to graph G, if Xu is conditionally independent
of all other non-neighbouring variables. Generally, Markov
random field can be factorized as the cliques of the graph,
and the joint probability can be described as follows:

P(X = x) =
∏

c∈cl(G)

φ(c) (1)

Then by optimizing the maximal likelihood with collected
data, a learning algorithm can find a best model to fit the data,
and finally output conditional probability for spatial prediction
of a new data.

Kriging (Gaussian process regression) [32] is another typi-
cal method for spatial prediction, which utilizes an observed
spatial relation to do spatial prediction for unknown areas. In
the Kriging method, it is assumed that each point i in a space
is associated with a value zi. Let u denotes a point whose
value, i.e., zu is unknown. Then let V(u) = {1, . . . ,Nn} be
a set of u′ neighboring points, and zi represents the known
value in prior for each point i ∈ V(u). In ordinary Kriging,
the unknown value ẑu at point u is estimated as a weighted
linear combination of the known values in V(n) as shown
in equation(2). To minimize the estimation error Kriging
calculates a set of optimal weights. There are several types
of Kriging with different assumptions. The ordinary Kriging
method assumes that the mean is a constant for a neighborhood
point, which can be represented as the estimation error at an
unknown point u is zero, i.e., E(ẑu − zu) = 0, where

ẑu =
∑

i∈V(u)

wizi, and
∑

i∈V(u)

wi = 1 (2)

Effectively, MRF works more like a supervised learning
model, which learns model parameters (i.e., transition prob-
ability of one state to another) from the original data, and
outputs one or zero to fit the unknown area. In contrast,
Kriging works similar to a regression model; it learns a set
of optimal weights and generates some values (between 0 and
1) to fit the unknown area.

2) Spatial heterogeneity: Spatial heterogeneity is another
challenging issue in spatial prediction. It refers to the variation
in the sample distribution across the study area [33]. It assumes
that spatial data samples often do not follow an identical
distribution in the entire big area, thus the learning model
from the entire area may indicate poor predictions for some
specific areas. To solve the above problem, the researchers
investigate several kinds of solutions, including integrating
spatial coordinate features into data mining, geographically
weighted models, and multi-task learning.

An example of integrating spatial information into data
mining is geographically weighted models (GWR) [34]. Here
the integration of spatial information into linear regression
model transforms the equation y = wTx+B into y = wTxβ+B,
where β represents the vector of location information of the
sample data. The advantage of GWR is that the location
independent value x can be integrated as a location dependent
value y smoothly and clearly. However, β is a matrix needed

to be estimated for each point of interest, and the computation
cost becomes high for such kind of estimation.

Another approach is based on multi-task learning. It is a
common machine learning solution for heterogeneous data,
and can group learning samples into several different learning
tasks. To solve the spatial heterogeneity problem, it is possible
to decompose the entire approach into several sub-tasks to
learn different models for different regions/locations. Then
the learnt sub-models are aggregated together, similar to the
ensemble learning. As compared to GWR, the advantage of
multi-task learning is its flexibility of different shapes of sub-
regions, however determining sub-regions can be non-trivial
[27]. Meanwhile, how to select base machine learning models
is another question for it.

B. Spatial clustering

Spatial clustering groups similar objects based on various
measures such as distance, connectivity, or their relative
density in space. As a part of unsupervised learning in
machine learning and concept hierarchies, the cluster analysis
in statistics aims to find interesting structures or clusters from
data based on natural notions of similarities without using
much background knowledge. Spatial clustering can be further
categorized into partitional clustering, hierarchical clustering,
density-based clustering, and grid-based clustering.

1) Partition-based clustering: Partition-based clustering
such as k-means [36] method separates n objects into k
clusters to optimize a given criterion (such as the squared error
function). The partitioning around medoid (PAM) algorithm
[37] effectively finds the most centrally located objects as
representatives of each cluster in an iterative way. To improve
the efficiency, the sampling-based clustering large applications
(CLARA) algorithm [37] was proposed to accelerate PAM on
larger datasets. An enhanced version, named CLARA based on
randomized search (CLARANS) [38] algorithm outperforms
CLARA and PAM both in efficiency and effectiveness by using
a randomized search [63] constrained by the maximum number
of neighbors. However, the outputs of partitional clustering
algorithms are mostly hyper-ellipsoidal and of similar sizes.
Therefore, it is not easy for these algorithms to find clusters
with different sizes or shapes [64]. In a disaster scenario, these
methods are good for clustering data and finding the center of
each cluster, which can be used for the application such as
finding an optimal route to deliver supplies, but not suitable
to reflect an arbitrary shape of clusters.

In the most recent research works [39], [40], partitional
clustering is further enhanced in several ways. In [39],
KMDD (clustering by combining K-means with density and
distance-based method) was proposed to first cluster data with
ball-shape based on K-means, and then in the second stage
subclusters are further processed based on DBSCAN to gain
an arbitrary shape of clusters. The integration can achieve
a fast clustering and allows arbitrary shapes. Reference [40]
proposes a parallel adaptive partitioning algorithm (ParADP)
for spatial join operation which can achieve a more balanced
partition during spatial join operation.
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TABLE I
Comparisons of Spatial DataMining Algorithms: Part 1

Types Categories Basic Description Models and Algo-
rithms

Details Usecases in Disas-
ter

Spatial
Prediction

Spatial
Auto-
correla-
tion

Contextual
Information

Extract spatial
relationships from
contextual
information

Reference [28] Extract spatial relationships directly from
location information Predict situations

in an unknown
area by prediction
models. Spatial
information can be
extracted from
multiple data
sources.

Reference [27] Extract spatial relationships from raster data
Reference [29] [30] Extract spatial contextual information from

multiple data sources

Model-
based

Build a unified
model for spatial
and non-spatial
information

Reference [31] Build a Markov Random Field based pre-
diction model

Reference [32] Build a Gaussian Process (Kriging) based
prediction model

Spatial
Heterogeneity

Assume spatial
data do not follow
an identical
distribution

Reference [34] Integrate spatial information into learning
model for a location-dependent learning

Wireless signal
prediction for
disaster resilient
base station.

Reference [35] Decompose the model into some sub-
models based on multi-task learning

Spatial
Clustering

Partition-based
Approaches

Separates the
whole target into
several clusters

Reference [36] k-means method Clustering people
who need a specific
supply, and design a
delivery route by
visiting cluster
centers.

Reference [37] PAM which effectively finds the most cen-
trally objects as representatives of cluster

Reference [37] [38] A sampling-based clustering large applica-
tions (CLARA) algorithm for large datasets

Reference [39] Partition-Density joint clustering
Reference [40] Adaptive partition for spatial analysis

Hierarchical-based
Approaches

A “bottom up”
approach by
constructing a tree
of clusters

Reference [41] BIRCH: measure similarity based on cen-
troid or medoid

Similar to the
partition-based
approaches, but need
to pay attention to
noise data.

Reference [42] CURE: single-link hierarchical methods
Reference [43] ROCK: Consider new measures, e.g., inter-

connectivity
Reference [44] Hierarchical clustering based on topology

learning to reduce computation complexity
Reference [45] Time-hierarchical clustering
Reference [46] Hierarchical aggregation for distributed

clustering
Reference [47] Parallel hierarchical clustering

Density-based
Approaches

Take density as
critical for
clustering

Reference [48] DBSCAN Draw an arbitrary
shape of area with
dense people who
need something.

Reference [49] Adaptive DBSCAN for massive data
Reference [50] For different densities, shapes and sizes
Reference [51] Grid-based DBSCAN

Clustering for big
data stream Evolving of Cluster

Reference [52] Evolving cluster based on dynamic generat-
ing micro clusters

For real-time data
stream, and the
situation evolves
accordingly.

Reference [53] Ant colony stream clustering (ACSC) algo-
rithm to incrementally update micro clusters

Reference [54] [55]
[56]

To select representative points and handle a
better evolving pattern

Reference [56] Evolving clustering based on Affinity Prop-
agation (AP) algorithm

Parallel Clustering Spatial clustering
in a parallel way

Reference [57] [58] DBSCAN with MapReduce

Need to speedup
the clustering
procedure.

Reference [59] A parallel-processing model on a multi-core
CPU

Reference [60] Distributed spatial clustering by merging
local clusters together

Reference [61] [62] Parallel clustering in GPU

2) Hierarchical clustering: The agglomerative hierarchical
clustering is a “bottom up” approach by constructing a tree
of clusters. The tree will dynamically grow when a new data
point comes. Typical algorithms include BIRCH [41], CURE
[42] and ROCK [43]. BIRCH measures closeness similarity by
using centroid- or medoid, and it outperforms the CLARANS
algorithm for large datasets. The single-link hierarchical meth-
ods such as CURE [42] find clusters of arbitrary shapes and
different sizes by measuring the similarity of the closest pair
of data points belonging to different clusters. But hierarchical
methods are susceptible to noise, outliers, and artifacts. The
aggregate similarity based methods such as ROCK [43] con-
sider new measures, e.g., inter-connectivity, and Chameleon
[64] further overcomes its limitation by measuring both inter-

connectivity and closeness for identifying the most similar
pair of clusters. In a disaster scenario, the advantage can be
arbitrary shapes of clusters, however the disadvantage is much
more clear, including computation complexity by gradually
adding each point to the cluster, and noise data can affect the
clustering results a lot in the early stage.

3) Density-based clustering: The most popular density-
based clustering method is DBSCAN [48] which finds groups
of points that satisfy the following condition: given a radius
Eps, a cluster at least contains a minimum number of objects
MinPts, and all the points satisfy density-reachable conditions.
Several studies have been proceeded to improve DBSCAN,
from parameter setting [65], efficiency optimization [66], and
parallelization [57], [59], [60]. In [49], an adaptive DB-
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SCAN was proposed to deal with the data points between
two clusters. The research in [50] considered non-uniform
distribution of density parameters during clustering, proposed
algorithm DENSS to identify the clusters of different densities,
shapes and sizes. However, its computation complexity is high
because it processes each data point individually. Grid based
clustering differs from the above two in that it assigns a value
in each cell of the grid covering several data points. Thus
Grid-based clustering is generally quite efficient in big data
processing as long as the grid cell is not too small. In [51],
grid based algorithm is integrated with DBSCAN, which can
promote a faster clustering while keeping arbitrary shapes of
clustering.

4) Evolving clustering techniques: With the development
of big data applications, clustering technologies also evolve in
order to deal with some emerging challenges, such as handling
streaming big data [52]–[55]. Evolving cluster was originally
proposed in [67], which separates clustering procedure into
online and offline stages. During online stage, micro clusters
are generated temporally when the streaming data arrives,
and once an aggregation command arrives, micro clusters
aggregate together to produce a global cluster. This can be
done in an offline stage. In [53], ant colony stream clustering
(ACSC) algorithm was proposed, in which a tumbling win-
dow model is used to read a stream and micro clusters are
incrementally formed during a single pass of a window. Micro
clusters are then refined by using an ant-inspired method,
which emulates an ant’s pick-up and drop actions. But how
to select representative points in micro clusters and how to
handle the rapidly evolving patterns still are critical problems,
which have been tackled in [54] [55]. They were proceeded
by extending the Affinity Propagation (AP) algorithm and an
online version STRAP [56]. AP is a message passing-based
clustering method proposed in [68], which does not need to
decide the number of clusters in advance and the original
points can be set as cluster centers directly. STRAP [56]
is an enhanced version of AP to process data clustering by
incrementally updating the current model.

C. Spatial Outlier Detection
Spatial outlier detection [92] discovers the data which are

spatially distinct from their surrounding neighbors, such as
the red cross mark in Fig. 3. In many real applications using
geographic information, such as transportation, public, safety,
and location based services [93] [94], spatial objects cannot
be simply abstracted as isolated points, because different prop-
erties, such as boundary, size, volume, and locations among
the spatial objects, lead to neighborhood effects. For example,
the size and type of business determines the amount of road
traffic that this business will create.

Outlier detection is a typical approach in machine learning
and data mining field and can be implemented based on
clustering, classification, or regression techniques in machine
learning. Spatial outlier detection is similar but more concen-
trated on discovering some unexpected, interesting, and useful
spatial outlier pattern for further analysis. Here spatial objects
can be seen as spatial points with attribute values (non-spatial
value such as temperature).
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Fig. 4. Spatial outlier detection based on a Variogram Cloud.

There are various statistical tools or methods available
for spatial outlier detection. The spatial statistics literature
[70] provides two kinds of bi-partite multi-dimensional tests,
namely, graphical tests and quantitative tests. One is graphic-
based approach, such as variogram clouds in [69] [70] and
pocket plots in [69] [95]. These visualize the data first and then
find the corresponding spatial outliers. However, graphical
tests need a precise criteria to distinguish the spatial outliers.
The other is a quantitative test including Scatterplots [96] [97]
that show attribute values on the X-axis and the average of
the attribute values in the neighborhood on the Y-axis. A
regression line is drawn to identify spatial outliers. Moran
scatterplots [74], [76] is another type of quantitative test
method, which shows the spatial association or non-association
of spatially close objects. Although quantitative tests share
common technologies with the graphical tests, they outperform
graphical tests by providing a more precise result.

As an example, bipartite tests are typical multi-dimensional
spatial outlier detection methods, which use the spatial at-
tributes to characterize location, neighborhood, and distance.
Then they further find a spatially referenced object in the
neighborhood based on non-spatial attributes such as tem-
perature. A Variogram Cloud can be used for spatial outlier
detection [98]. In a variogram, the x-axis represents the non-
spatial features and y-axis represents the spatial distance of
pairs of points. As an illustration, Fig. 4 shows two pairs
above the main group of pairs; these are possibly related to
spatial outliers. The two pairs marked as spatial outliers have
short pairwise distance in y axis, but big difference in x axis.
Several other methods used for spatial outlier detection [99]
include kNN, and also different statistic measures are used
for representing spatial distance, e.g., z-value. The z-value is
used to detect spatial outliers for an attribute value, e.g., f (x),
which follows a specific distribution, by calculating standard
deviation of the value in the location x. For the spatial data at
location x, the outlier is detected if its z-value is larger than a
predefined threshold.

D. Spatial Co-location

Spatial co-location discovery [100] finds the subsets of
features that are frequently located together in the same
geographic area as shown in Fig. 3 (white and yellow circles).
Spatial co-location mining problem can be formalized as
follows [81]: Given a set F of K types of spatial features
F = { f1, f2, ..., fK}, and their instances I = {i1, i2, ..., iD}, where
D represent the amount of data. Each instance of data ii is

6



TABLE II
Comparisons of Spatial DataMining Algorithms: Part 2

Types Categories Basic Description Models and Algo-
rithms

Details Usecases in Disaster

Spatial
Outlier
Detection

Graphic-
based
Approaches

Visualize data in a
graph and find
spatial outliers

Reference [69] [70]
Variogram clouds: the points with near lo-
cation but large variance on attribute value
indicate spatial outliers.

Abnormal location of
people’s sentiment: Easy
to see in a graph

Statistics-
based
Approaches

Detect spatial
outliers based
various statistics
information

Reference [71] Z-value: compute standardized difference
for each point Spatial outliers from

statistics point of view,
such as hotspots where
need more supplies
consider all requirements
in the whole area

Reference [72] [73] kNN-based solution
Reference [74] [75] Scatterplots: a regression line is drawn to

identify spatial outliers
.

Reference [76] Moran scatterplot: outliers are the points
surrounded by unusual value of neighbors.

Spatial
Co-
location
Pattern
Discovery

Statistics-
based
Approaches

Based on staticstics
information

Reference [77] Cross-K function Co-location pattern such
as *KK*: destroy levels
and people’s sentiment

Reference [78] Cross nearest distance
Reference [79] Q-test

Data Mining
based
Approaches

Association rule
based Approaches

Reference [80] Visualization and data mining Quick co-location pattern
discovery while the
computation complexity
can be reduced by
specific data mining
methods

Reference [81] [82] Spatial join based approach
Reference [83] Joint-less approach
Reference [84] Constraint neighbourhood based approach

Clustering based
Approaches

Reference [85] Layer-based approach by finding overlapped
areas

Reference [86] Mixed clustering

Other
Approaches

Parallel based
Approaches

Reference [87] Parallel solution on GPU For specific requirements,
such as understanding
evolving situation or
needing quick response

Reference [88] [89] Parallel based on Map-Reduce framework
for big data

Dynamic
Approaches

Reference [90] [91] To solve dynamic changing problem of co-
location patterns

represented by a vector < id, ik, loci >, including its id, a type
of spatial feature ik and its location. Spatial co-location mining
refers to efficiently finding the colocated spatial features in the
form of features or rules.

Co-location pattern discovery can be mainly classified into
two categories: spatial statistics based and data mining based.
The spatial statistics based approaches use various measures
to characterize the relation between different types of spa-
tial events (or features), whereas data mining methods find
frequent and meaningful relations, positive associations, and
stochastic plus asymmetric patterns among sets of items in a
large transaction database and a spatial database. Measures
of spatial correlation [81] include cross-K function [77]
with Monte Carlo simulation and mean nearest-neighbor dis-
tance [78]. The cross-K function for binary spatial features
is defined as λ−1

j E[number of type j instance within distance
h of a randomly chosen type i instance] [77], which can
be estimated by Monte Carlo simulation. It can be used to
represent co-location pattern of two features i and j. Mean
nearest-neighbor distance calculates average feature distance
with other data.

Data mining approaches can be further divided into the
clustering-based map approach and association rule-based
approaches, or their integration [101]. Association rule mining
(ARM) was first introduced in [102] as an efficient approach
for finding frequent and meaningful relations among several
sets of items in large spatial databases [103]. It outputs
participation ratio (between 0 and 1) to represent the co-
location relationship of two features: 1 represents almost all
the points from two features are co-located, and 0 shows the
opposite case.

As inspired by [81], Fig. 5(a) shows a toy example to
compute the participation ratio. There are some points in the

figure with two types of features A and B. ARM works by
first generating an instance table for each type of feature, i.e.,
t1 for feature A and t2 for feature B as shown in Fig. 5(b).
And then it generates co-location relation table t3 in Fig. 5(c),
in which each pair of instances are located as a neighborhood,
e.g., A.1 and B.1. The participation index is further calculated
as shown in Fig. 5(d).

The output from cross-K function is quite clear based
on its definition. However, computing cross-K function for
all possible points can be computationally expensive given a
large collection of spatial features [81]. Even the procedure is
different, ARM output a similar value, i.e., participation index,
to represent co-location pattern of two types of data. Also
high computation time is required for spatial join operations
in [81], however it has been enhanced by a joinless approach
in [83], by using an instance-lookup scheme instead of an
expensive spatial join operation. The experiment results show
that joinless approach can reduce almost half of execution time
when the neighbor distance is setting around 200m in a real
data-set. For only clique and star co-location patterns, authors
in [84] introduced a more efficient co-location mining method,
by defining constraint neighbor for clique or star co-location
pattern respectively. For example, to detect a star co-location
pattern, a point lk must be the neighbor of the center point in
another star type data.

In recent years, spatial co-location mining has been further
developed to deal with big data issues, mainly by exploiting
the parallelism [87], [89], [104]. In [104], parallel co-location
mining algorithm is proposed for working with GPU-based
platforms based on iCPI tree. iCPI tree is short for (improved
Candidate Pattern Instance tree), which is an index to represent
the neighborhood relation of instances for different features.
Assume there are several instances of feature A, B, and C,
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(d)

Legend:
T.i  represents instance i with feature type T
Lines between instances represents neighbor relationships

(a)

Fig. 5. An example of Association Rule Mining (ARM).

denoted as Ai, Bi and Ci. iCPI tree can easily tell us what
are the neighbors of a given instance Ai having feature C.
A GPU-based version of iCPI tree is proposed in [104], and
further enhanced using a grid-based approach [87] to reduce
the computation complexity of spatial co-location mining pro-
cedure. In [89], spatial co-location mining is redesigned using
the MapReduce framework where several reducers accomplish
different stages of spatial data processing, including searching
neighboring pairs, counting neighboring objects, and finding
co-located events.

Another interesting approach is to deal with dynamic rela-
tionships among spatial features, e.g., the decrease of “algae”
and the increase of “water hyacinth” belongs to spatial co-
location patterns. To detect such a dynamic pattern, refer-
ence [90] gives various definitions to quantify a dynamic
spatial co-location pattern including dynamic feature, dynamic
distance threshold, dynamic spatial neighborhood relation-
ships. It then proposes a data mining algorithm to reflect the
dynamic relationships among the spatial features. Comparison
of different spatial data mining algorithms are summarized in
Tables I-II.

E. Deep Learning-based Approach

In recent years, deep learning technologies have been
gradually adopted into spatial data analysis. Different from
traditional ways, they learn spatial-temporal patterns directly
from the data, instead of the predefined rules beforehand. Most
popular techniques are CNN to detect spatial patterns, and
RNN (e.g., LSTM) to find temporal patterns, or the integration
of both. A spatial-temporal event prediction framework was
proposed in [105] based on Deep Neural Networks. It consists
of 3D convolution networks, where one dimension encodes the
temporal information, second dimension represents the spatial
information, and the third dimension encodes both. In [106],
the authors proposed a deep spatio-temporal residual network
(ST-ResNet) to predict inflow and outflow of crowds in each
region. ST-ResNet adopts convolution-based residual network
to model spatial dependency between any two regions, and
then uses the same residual networks in different timeline

to detect temporal dependency. Three types of temporal de-
pendency are considered, including distant, near, and recent,
to represent three kinds of temporal closeness. Finally the
above three residual networks are integrated together to output
the final prediction. Authors in [107] have enhanced the re-
search with 3D convolutions for traffic prediction, considering
temporal and spatial information. They have similar network
architecture with [106], while local temporal patterns and long-
term temporal patterns are further adopted in the learning
architecture.

LSTM-based traffic flow prediction method has been devel-
oped in [108]. They first developed an Attentive Traffic Flow
Machine (ATFM), which consists of two Convolutional Long
Short-Term Memory (ConvLSTM [109]) units to learn spatial
and temporal patterns. It has two LSTM units and connected
in a sequential way through a convolution layer in the middle,
where the first LSTM unit takes normal traffic features as
input and then outputs to the connected convolution layer for
spatial feature detection. The second LSTM unit learns more
effective spatial and temporal patterns after the convolution
layer. The whole learning architecture consists of a sequential
representation learning module and a period representation
learning module, both of which are constructed based on
ATFM. The purpose is to learn different kinds of temporal
patterns based on different types of learning architecture.

IV. Situation Awareness in Different Disaster Applications

According to World Health Organization, “a disaster is
an occurrence disrupting the normal conditions of existence
and causing a level of suffering that exceeds the capacity of
adjustment of the affected community”. Disasters can evolve
over very long periods of time; however, the focus of this paper
is on events that cover large geographic areas and evolve rather
rapidly such that the dissemination of relevant information
becomes challenging. There are numerous types of events
even under this restricted definition with varying impacts and
mitigation challenges; however, they all crucially depend on
rapid and accurate situational awareness.

A. Practical disaster scenarios and social media

There are numerous types of disasters, each requiring spe-
cialized big data and deep learning techniques depending on
the nature of available data. For example, wild-fires typically
occur away from populated areas and even monitoring them is
a big challenge. Here we only speak of some disasters where
social media based analysis plays a significant role.

Earthquake/Landside: Social media big data provides a
chance to understand situations after an earthquake such as
sentiment/attitude for the government actions, requirements
from people and so on. It is quite a typical application for
situational awareness based on social media big data.

COVID-19: Big Data/Deep Learning Technologies have
been used for COVID-19 to perform semantic situation un-
derstanding through content analysis of Twitter posts [4] [5].
In [4], the authors have collected a large-scale twitter dataset
for COVID19 sentiment analysis, and through the analysis
based on various machine learning and deep learning methods,
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they found in some periods people were losing trust in the
government to control the situation, and then the behaviors
changed to fear, disgust and sadness later. In [5], authors have
researched on the sentiment behaviors of lockdown in India
during COVID19. They collected 12741 tweets which includes
the keyword “Indialockdown” from April 5 to April 17, 2020,
and implemented several supervised machine learning methods
to recognize the attitude of tweets. During the analysis, they
found that around 49% are negative, 21% are negative and
around 30% are neutral.

From the situational awareness perspectives, the existing
literature can be categorized as follows: (1) Assessment of
communications network outages and mitigation mechanisms,
(2) Assessment of power outages that may interfere with
communications, (3) Prediction of situational evolution, and
(4) Assessment of individual needs (e.g., need for food,
water, medical help, etc.). The key works in these areas are
summarized in Table III, which are also elaborated in the
following subsections.

B. Situational awareness of network connectivity

We define network disturbance as any situation that nega-
tively impacts ability of nodes to send and receive data. This
might include situations when the network demand exceeds
capacity due to bursts of activity and inadequate bandwidth,
or when portions of the network are down or disconnected.
Network performance related data can be useful in detecting
the disturbances, understanding their severity and causes, and
taking adaptive actions to recover from them. Given the high
degree of robustness and redundancy of the public communi-
cations networks, large scale network failures are very rare,
as evidenced by the network damage during the Kumamoto
earthquake and hurricane Sandy. Also, if a large network
outage does occur, it would decimate the social media traffic
in the affected area; therefore, we do not focus on large scale
network outages.

1) Detection of network disturbances: Detection of network
disturbance can be performed by analyzing the spatial scan
statistics [110] and its many extensions [111]–[113] to detect
spatial, temporal, or spatial-temporal areas where the user’s
activity is different from the norm. Network abnormality or
anomalies in a cellular network can be identified by examining
the call records of the users in a region, their locations, mobil-
ity patterns etc. Similar anomalies can also be identified from
the user’s tweets that originate from the region of interest and
their spatio-temporal behaviors. Spatial outlier based scanning
can be applied in this context for spatio-temporal anomaly
detection. Of course, the accessibility to the required data often
is a constraint.

Spatial scan based algorithms have traditionally been used
for disease mapping where the objective is to find regions
containing significantly increased incidence of disease symp-
toms, but many other applications also exist. The spatial scan
algorithms scan the spatial-temporal region of interest to find
the most significant subregion and report its statistical signifi-
cance. A notable application of scan statistics in the domain of
social networks is analysis of spatial distribution of 803 flickr

tags in the Bay Area [114] in order to distinguish between
place and event related tags. The key challenge for analyzing
such scan statistics is computation because there is potentially
a huge number of terms that could be tracked, which may
require distributed processing across multiple clusters. For
social media generated data, another challenge is to account
for geolocation and temporal uncertainty in such data, and at
the same time account for the expected mobility of the mobile
users.

(a) (b)

Fig. 6. Adaptation of the routes after sniffing potential congestion between
Tokyo and Sapporo. (a) Route-1 is the direct route from Tokyo–Sapporo,
whereas (b) Route-2 goes through Kyoto.

2) Congestion and traffic control: Big data analytics can
be beneficial for traffic monitoring in both wireless and wired
networks. Such analytics can be used to identify congestion in
the communications infrastructure immediately before, during
and after the disaster. Often the communications network
experiences congestion when the event is imminent and during
the event period. The reason for congestion could include both
damage to and high demand for computing and communica-
tions. It is important to understand and manage such conges-
tion while also backing up the state of potentially affected
computing infrastructures to remote locations. Congestion
remains crucial after the onset of the event related disruption.
Social media data such as user tweets can also address the
issue of characterizing failures in the network [115] – i.e.,
user complaints about the network functionality or slowness.
Examples of such tweets are as follows [116]: “I cannot get
through to Miyagi...I’m worried.”, or “I’m in Shibuya now. I
cannot get through.” etc. Spatial clustering based schemes can
be used to identify those regions where such complaints are
significantly higher than in other regions.

Reference [117] uses the data plane programmability of
the Openflow switches to provide a more flexible control
of wired networks. For example, in Fig. 6 the costs of the
routes are increased based on the tweets complaining about
the network issues. The Openflow controller can switch the
routes whenever it sniffs a link congestion. In Fig. 6 the
route-1 in between Tokyo and Sapporo is switched to route-2
after the controller sniffs a potential congestion on route-1.
The Openflow switches can also be reprogrammed for content
based bandwidth control. For example, in case of potential
network congestion, packets related to SMS, email or voice
communication can be given higher priority than the video
based communications.

3) Finding network isolation and resource allocation: An-
other application of situational awareness is to identify isolated
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regions that are functional but disjoint from the remaining
network. In a cellular network, tracking the call records and
the usage densities are good indicators of finding the network
availability. Spatial outlier detection based techniques are very
useful in such contexts, where the objective is to find the
regions where the usage is significantly lower as compared to
the surrounding regions. However, this is a very challenging
problem because of the need to analyze the available data
over a large region encompassing the isolated area. Notice
that such isolation can also happen due to other reasons, such
as drainage of the smartphone batteries due to lack of power
and mobility or evacuation of the users from a certain area.
Careful analysis of the call density along with other useful
information from multiple sources (such as evacuation notice)
can be utilized for finding such network isolation.

Upon finding the isolated, disconnected regions, a variety
of emergency equipment such as WiFi access points, satellite
gateways, replacement cellular base stations, etc. mounted
in fixed places or on Emergency Communication Vehicles
(ECVs) can be deployed to bring the connection back. Mov-
able base-stations or access points mounted on drones and
balloons can also be deployed for meeting the communication
gaps [118]. As the resource requirements in a disaster scenario
change over time, spatial prediction of the user density and
usage patterns are needed before such deployment operations
to avoid further disruption and performance fluctuations.

C. Situational awareness of power outages

Real time situational awareness for detecting power out-
ages from social media data has received interest in recent
years. Reference [119] have used keyword searching to collect
power outage-related tweets. They have developed a modified
approach of Kleinberg’s burst detection algorithm to promptly
detect the power outages from the tweets. In [120] the au-
thors have proposed a supervised Latent Dirichlet Allocation
(sLDA) to detect power outages. To overcome the limitations
of 140 character limit of the tweets, the authors have used a
supervised topic modeling with text-rich heterogeneous infor-
mation network. In [121] the authors have studied the reported
cases of power outage related tweets during Hurricane Sandy.
They have also proposed a k-means clustering scheme for the
efficient allocation of power resources based on the available
tweets. In [122] the authors have analyzed the brightness
change in the satellite data along with the density of power
outage for identifying the severely impacted areas.

The studies show that Twitter data fused with satellite
imagery can identify power outage information at a street-
level resolution. In [123] the authors have used the key textual
descriptions of power outages to filter the relevant Tweets, and
built a predictive model that identifies those Tweets referring
to real power outages. The procedure has been field tested
on the users in real industrial settings; the results show that
more than 93% of all the power outages detected by the
scheme referred to the real outages. In [124] the authors
have separated the tweets into power outage, communication
outage, and both power-communication outage related events
by analyzing popular words, length of words, hashtags and

sentiments that are associated with these tweets. The study has
claimed that using simple classifiers like boosting and support
vector machine can successfully classify the outage related
tweets from unrelated ones with close to 100% accuracy. The
study has also claimed that by employing transfer learning
models such as Bidirectional Encoder Representations from
Transformers (BERT), different categories of outage-related
tweets can be classified with an accuracy close to 90% in less
than 90 seconds of training and testing time.

D. Situational awareness concerning disaster evolution

In recent years, researchers have started using social media
data for deriving evolving disaster events. In fact, it has been
studied that the digital footprint of a disaster is typically
proportional to its impact in the ground level. For exam-
ple, the researchers in [136] have studied that the number
of photographs uploaded in Flickr during Hurricane Sandy
strongly correlates with the atmospheric pressure in New
Jersey. In [137] the authors have studied the Twitter activities
of 50 metropolitan areas in the United States during hurricane
Sandy and have shown strong correlation between the hurri-
cane’s path and the hurricane related tweets. The authors have
also demonstrated that the per-capita Twitter activity strongly
correlates with the per-capita economic damage inflicted by
the hurricane. Similar studies are also reported in [138] that
shows a close relationship between damages caused by Sandy
and Twitter activities. Another similar study has also been
reported in [139], where the authors have studied that the
disaster related tweets and the distribution of damage, physical
extents of floods during the River Elbe Flood in Germany in
2013 follow similar spatio-temporal distribution.

More recently, researchers have begun using social media
platforms to derive insights regarding the continued evolution
of Covid-19 pandemic over 2020-21, that has placed sub-
stantial stress on medical personnel and supplies including
hospital-beds, doctors, nurses, paramedics, personal protection
equipment (PPE), ventilators, ambulances, police, test kits,
testing supplies, common medications currently being pre-
scribed, etc. In [125] the authors have identified Covid-19
related hashtags, and have grouped them into six categories
(namely general Covid, quarantine, panic buying, school clo-
sures, lockdowns, and frustration & hope). They have also
presented a linguistic analysis of the tweets in different hashtag
groups and have observed that words such as family, life,
health and death are common across hashtag groups.

In [126] the authors have characterized public awareness
regarding Covid by analyzing tweets in the most affected
countries. Specifically, the authors have examined the (a)
temporal evolution of Covid related trends, (b) the volume of
tweets and recurring trends in these tweets, and (c) the user
sentiments towards preventive measures. In [127] the authors
have implemented a neural network for sentiment analysis us-
ing multilingual sentence embeddings; they have observed that
in almost all countries the lock-down announcements correlate
with a deterioration of mood, which recovers within a short
time span. The authors in [128] have addressed the diffusion
of Covid related information with a massive data analysis on
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TABLE III
Situational Awareness in Disaster Situations

Types Key points Representative
Works

Details

Situational awareness
in comm. networks

Spatial scan related analysis for finding
the network disturbances, congestion and
network isolation

Reference [115],
[116]

Characterizing network failures from user complaints
about network functionality or slowness

Reference [117] Used data plane programmability of the Openflow
switches to adopt flexible network control

Reference [118] Studied the optimal delay in a fog/edge-computing
platform constructed by vehicle-based movable &
deployable ICT resource units

Power outage
detection

Situational awareness for detecting power
outages from social media data using
keyword searching

Reference [119] Developed a modified approach of Kleinberg’s burst
detection algorithm to promptly detect the power
outages from the tweets

Reference [120] Developed a supervised Latent Dirichlet Allocation
to detect power outages

Reference [121] Proposed a k-means clustering scheme for the ef-
ficient allocation of power resources based on the
available tweets

Reference [122] Shown that Twitter data fused with satellite imagery
can identify power outage information at a street-
level resolution

Reference [123] Developed a predictive model for identifying Tweets
referring to real power outages

Reference [124] Separated the tweets into power outage, communica-
tion outage and both power-communication outage
related events

Disaster Evolution

Analysis of Covid related tweets regarding
public awareness,sentiment analysis, and
classification of informative tweets from
others

Reference [125] Identified Covid related hashtags, along with the
linguistic analysis of the tweets in different hashtag
groups

Reference [126] Characterized public awareness regarding Covid by
analyzing tweets in the affected countries

Reference [127] Implemented a neural network for sentiment analysis
using multilingual sentence embeddings

Reference [128] Discussed the diffusion of Covid related information
with a massive data analysis on Twitter

Reference [129] Proposed a multi-view clustering for analyzing
tweets using clustering hashtags

Resource Need
Evolution

Analysis of tweets regarding resource
needs, availability; filtering,
summarization and classification of
informative tweets from others

Reference [130] Analyzed tweets regarding resource needs and re-
source availability

Reference [131] Developed a DNN to identify and classify informa-
tive tweets into topical classes

Reference [132] Compared matching-based and learning-based ap-
proaches for effectively identifying relevant mes-
sages from matching keywords and hashtags in social
media data

Reference [133] Proposed an ILP to generate summaries of twitter
messages

Reference [134] Enhanced real-time situational awareness through
filtering and summarization of social media data

Reference [135] Developed a probabilistic spatio-temporal model to
find the center of the target event

Twitter, Instagram, YouTube, Reddit and Gab. They have also
fit information spreading with epidemic models characterizing
the basic reproduction numbers for each platform. The authors
in [129] have analyzed Covid related tweets using clustering
hashtags, and have proposed a multi-view clustering technique
which incorporates multiple different data types that can be
used to describe how users interact with hashtags. A review of
available methodologies for developing data-driven strategies
to combat the Covid pandemic is discussed in [140], along
with their difficulties and challenges.

E. Situational awareness of human needs in disaster

Social media data for situational awareness in crisis scenario
are discussed in [141]–[143]. In [130] the authors have ana-
lyzed tweets regarding resource needs and availability (e.g.,

transport, food, water, health-care, etc.) for efficient manage-
ment of post-disaster operations using supervised classification
and unsupervised pattern matching and information retrieval
approaches. The authors have conducted experimental study
on tweets posted during the Nepal earthquake in April 2015
and the Italy earthquake in August 2016. The study shows
that classification approaches perform better if good quality
training data are available from prior events, whereas in the
absence of such training data, unsupervised retrieval methods
outperform supervised classification approaches.

In [131] the authors have proposed a Deep Neural Network
(DNN) to identify informative tweets and classify them into
topical classes. They have also proposed an online stochastic
gradient descent based algorithm to train the DNNs in an
online fashion during disaster situations. Reference [132] has
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provided a comparison between matching-based [144], [145]
and learning-based [131], [146] approaches for effectively
identifying relevant messages from matching keywords and
hashtags in social media data. Learning-based approaches
typically build a model from a set of labeled tweets, whereas
matching-based approaches search the tweets having relevant
keywords and hashtags. In [133] the authors have proposed an
Integer Linear Programming (ILP) technique that summaries
a big volume of twitter messages around some identified sub-
events, that helps crisis responders to quickly understand the
situation. Reference [147] has generated verified summaries
from the information posted on Twitter during disasters. En-
hancing real-time situational awareness through filtering and
summarization of social media data is reported in [134]. The
authors have reported the study of twitter data during the 2012
Sandy Hurricane from New York, Philadelphia, Boston, and
Washington DC. In [135] the authors have devised a classi-
fication of tweets based on some keywords, their numbers,
contexts etc., and developed a probabilistic spatio-temporal
model that can find the center of the target event location. They
have implemented this approach as an earthquake reporting
system in Japan; the study has shown that it can promptly
detect 93% of earthquakes of Japan Meteorological Agency
(JMA) seismic intensity scale of 3 or more.

TABLE IV
Summary of Some Open Disaster Related SocialMedia Datasets

Dataset Types Data Size Time Range Coverage Resource

COVID-19-
TweetIDs [148] COVID-19 6.9 GB

Since
Jan. 21,
2020

World 1.98 billion
tweets

COVID-19
Twitter [149] COVID-19 About

12GB

Since
Mar. 11,
2020

World 1 billion
tweets

Weibo-COV
V2 [150] COVID-19

From Dec. 1
2019 to
Dec 30
2020

China 65.2 million
tweets

Disaster-
related
Tweet [151]

Typhoon,
landslide,
Ebola virus,
etc.

About
3GB

From 2014
to 2015 World 52.8 million

tweets

Bdr-tweet [152]

Fire, storm,
earthquake,
mudslide,
etc.

Less
than 5GB

From 2014
to 2015 USA

Geotagged
tweets for
15 disasters

Global-
Flood-
Monitor [153]

Flood
From Jul.
2014 to
Nov. 2018

176
count
-ries

88 million
tweets

F. Open social media datasets for real disasters

We now discuss some of the open datasets from some
social media during real disasters, as summarized in Table
IV. COVID-19-TweetIDs [148] is performing an ongoing
collection of tweets IDs associated with the COVID-19, which
started from January 28, 2020. It gathers historical Tweets
from the preceding 7 days, and the coverage is worldwide.
COVID19 twitter [149] is updated every 2 days since March
2020, and for each day it collects around 4 millions tweets.
The dataset is suitable for NLP study, since it also provides

(a) Raw data of the Napa Earthquake in [152]
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(b) Comparison of two clustering methods. In the figure ε is the maximum
distance between two neighbouring points, MinPts is the number of sample
points in a neighborhood, and K is the number of clusters.

Fig. 7. Illustration of DBSCAN and k-means clustering methods on dataset
from [152].

top frequent term for each day. The COVID19 datasets for
Chinese users can be found in [150]. CrisisNLP provides
a dataset [151] including various types of disasters, such
as Earthquake, Typhoon, Floods, Landslide and so on. But
the time period is only from 2014 to 2015. GlobalFlood-
Monitor [153] collected 88 million tweets, with 10,000 flood
events across 176 countries in 11 languages. Among these
datasets, Bdr-tweet [152] provides geotagged tweets for 15
disasters, so that researchers can also see the spatio-temporal
spread and patterns of the data. For example in Fig. 7 we show
the data of the Napa earthquake; we also perform two types of
spatial clustering algorithms, i.e., DBSCAN and k-means on
it. The differences between DBSCAN and k-means are quite
obvious. DBSCAN finds a cluster based on dense reachable
points, and thus it is better at finding a big area in which all
of the people have the same requirements after a disaster. For
example, the areas with higher density of people who need
water can be gradually connected. As shown in the left part
of Fig. 7(b), the red tweets which mentioned earthquake can
be clustered as a big area. On the other hand k-means is better
at locating the center of cluster, which may be important for
dispatching supplies.

V. Challenges in Integrating Big Data with Emergency
Scenarios

Even if several applications have been studied on situational
awareness in disaster scenarios, there are still challenging
issues when integrating big data with emergency network. Ac-
knowledging that twitter has established itself as the premier
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human communication mechanism during disasters and the
wealth of publicly accessible disaster-related twitter data, we
consider integration of the twitter-based information for the
purposes of situational awareness. Below we list some of the
key challenges regarding deriving situational awareness from
disaster related data analysis.

A. Spatio-temporal Uncertainty in Available Data

One specific challenge in using the user data is their origi-
nation. Some mobile users may disable their location in their
devices, or the location information from the base-stations may
not be precise enough due to localization inaccuracies. Data
originated from different locations during a disaster may have
varying data quality, precision, and accuracy. For example, the
location of the tweets is important as the tweets originating
around the disaster area are more important and contain
first-hand information. However, the users may not wish to
share their location. The timing is important since we wish
to consider it in dynamic network reconfiguration decisions.
Unfortunately, tweets may refer to past events without precise
time information. Thus, the challenges are both in terms of
estimating location and time as accurately as possible, and
using the available information suitably.

B. Data Ambiguity and In-homogeneity

The data generated by various sources is often non-
homogeneous in nature, incomplete, or ambiguous. Data ob-
tained from various social media is also prone to inaccuracies
and inconsistencies. For example, the first hand twitter reports
originating from the affected area are likely to be most
useful in situation awareness and hence network configura-
tion; however, because of potential damages to the Internet
infrastructure in the affected area, such first hand tweets may
be quite sparse. On the other hand, due to the popularity of
twitter during disasters, much of the information generated by
human-to-human communication media (e.g., word or mouth,
landline phone, broadcast media such as radio or TV, etc.)
increasingly ends up on twitter from non-disaster areas. In
general, the origin of these tweets can be from anywhere;
however, the regions around the disaster area are likely to be
the most relevant. This brings in issues of bigdata since one
must sort through a huge number of tweets in order to find the
relevant ones. In fact, even in the general disaster area, most
tweets may not be relevant for disaster response or network
evolution and must be filtered out in real-time.

C. Multimodal data fusion

Generally, information about the same situation can be
collected from different types of resources, e.g., texts and
images in Twitter and Instagram. For each kind of detector, it
is represented as a modality, and it is rare that a modality can
cover the complete information of the situation. Multimodal
data fusion is required to integrate the information into a
comprehensive view. Generally, there are two approaches for
multimodal data fusion: feature-level fusion and decision-
level fusion, also known as early fusion and late fusion.

Feature-level fusion merges features from different types of
data resources together before classification. For example, in
[154] a Topic Graph is proposed to integrate features from
different modalities together, which is constructed by nodes
(i.e., features or words) and edges among the nodes (i.e.,
correlation of features). For decision-level fusion, generally a
classification score is given to each modality and the maximal
one is treated as the final classification result. In [155], both
of these methods were evaluated with text, video and audio
contents, and the results from the both approaches increase
around 10% precision as compared to the result with the
single data resource. Most recently, deep learning is adopted
to achieve model-based fusion for multi-modal data fusion.
For example, strong modalities can be automatically selected
to achieve high accuracy of situation detection in [156].

D. Spatial Analytics During Evolving Disasters

Even though spatial analytics have been studied for a long
time, there are still new challenges when considering social
big data generated in disaster scenarios. This is because in
an evolving disaster scenario, the usage pattern and user’s
behavior changes over time, sometimes rather rapidly. Also,
the incoming user data from the crowd is highly dynamic
and the observed situation is intermittent, which becomes
an obstacle when trying to achieve reliable data analysis to
support decision-making after a disaster occurs.

To address the evolving spatial analytics, the authors
in [157] have introduced an information decay based spatial
clustering. The intuition behind this information decay factor
is that in a disaster scenario the disruptions over a region
cannot be satisfied immediately, and thus the importance of
such information does not disappear instantly, instead decays
gradually over time. Decay model has been investigated in the
spatial clustering for streaming data, i.e., evolving clustering.
As the data comes in a streaming way, small clusters are
first temporarily created to organize the received data in the
clustering process. However, the existing work only applies
the decay model to the clusters, but not for each point data,
which will affect the accuracy of situation representation.

E. Utilizing Non Geo-Tagged Tweets

Another key challenge of using Twitter data is the scarcity
of the number of geo-located tweets, which typically varies
between 0.42% to 3.17% [158]. Utilizing the non geo-tagged
tweets can also provide useful information if they can be
related approximately to their origin. Some works [158], [159]
have proposed to determine “local” words by exploiting the
geographical distribution of the words in tweets over a region.
Formally speaking, local words are the ones with high local
focus and fast dispersion, i.e. they are frequently used at
some central points and drop off in use rapidly as we move
away from the central points [159]. For example tube is more
frequently used in London than other places. By exploiting
such distribution around 50%–87% of the tweets can be
located within few tens of kilometers [158].

Geoparsing is another well-known technique for extracting
the locations (also known as toponyms) inside a text, which
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can be exploited for deriving locations from non geo-tagged
tweets. Using natural language processing techniques, loca-
tions in the level of streets or buildings can be derived, that
can help identifying the origin of a particular situation. For
example, a new tweet like “Having a moderate earthquake
5.8 mag here in Raoul Island, New Zealand” – provides
sufficient location information to locate the origin of the inci-
dent. Related literature on geoparsing can be broadly divided
into two categories [160], namely toponym recognition and
toponym resolution. Toponym recognition techniques [161]
extract single or consecutive words from texts and match them
to a comprehensive set of pre-existing set of toponyms. The
key limitation of these techniques is the ambiguity of the
toponyms, as many location names have multiple occurrences
worldwide. To overcome this limitation, toponym resolution
based approaches [162] use different spatial indicators such
as time zones, use location field, and other textual clues for
ensuring more reliable location estimates.

Even in cases where the geo-locations are not found, the
contents of the tweets can also provide important information
regarding the situation. Different natural language processing
techniques for keyword analysis to determine relevance, speci-
ficity (or fuzziness), and importance of the content can be
explored to determine the usefulness of such tweets, whereas
the irrelevant ones can be filtered out. These substantially
filtered, prioritized set of tweets can then be provided to human
experts involved in situation monitoring, to determine how the
infrastructure damage/repairs, movement of people, and po-
tential communications needs are changing, and consequently
how the relief assets (including those that support emergency
communications network) should respond to them.

F. Big Data Analytics in a Fragile Communications Network

After collecting the raw data from various sources, big
data platforms (such as Hadoop) need to sort through a huge
amount of data in order to extract the most relevant ones. In
fact, even in the general disaster area, most social media data
may not be relevant for disaster response or network evolution
and must be filtered out in real-time.

In the aftermath of a disaster, the communication systems
can be wiped out which makes distributed processing chal-
lenging. A fragile and disruptive emergency communication
network brings new challenges for spatial big data analytics
since big data is often analyzed in a cloud center to re-
duce processing time, and the transmission delay from user’s
devices to the cloud could become dominant. This requires
tradeoffs between local processing at the devices, intermediate
processing at some edge computing nodes, and final processing
in the cloud. However, distributing processing among these
heterogeneous levels with varying storage, processing, and
communications capabilities becomes quite challenging.

VI. Temporal Evolution of Spatial Features: A Case Study

Much of the data is very hot when generated, and then
its popularity wanes over time. In some cases, the data may
become hot again but this is less likely as the data ages. This
trend is true for the social media data as well. In this context,

we define the “information energy” of a tweet as the intensity
of the tweet that has the highest power when a tweet originates,
and then gradually fades over time. Information energy for
a specific location can be accumulated with other messages
(or tweets) describing the same situation. Assume that the
information energy for a point object p in spatial big crowd
data at time instance tc is denoted as Eε(p, tc). Also assume
that the temporal decay of the information energy (TDIE) for
each spatial data follows an exponential decay. An exponential
model is desirable since it corresponds to a fixed additional
decay for each additional unit time elapsed. Thus,

Eε(p, tc) = Eε(p, tp) · η−λ·(tc−tp) (3)

where tp denotes the time stamp when spatial data/object
p appears, η and λ are the base and the exponent of the
exponential decay respectively.

To find the spatial hotspots during an evolving disaster,
we choose a density measure based on Kulldorff’s spatial
scan statistic [163], which is commonly used in finding the
significant spatial clusters in case of emerging outbreaks.
With this the incremental spatial clustering in an evolving
disaster (or outbreak) scenario has two main functions, the
spatial data aggregation (SDA) and spatial data clustering
(SDC). The SDA handles decay and reinforcement of the
information weight over regions. The SDC tracks the boundary
and movement of the dense regions of the targeted evolving
disasters.

We demonstrate temporal and spatial evolution of tweets
related to Covid-19 pandemic [164] as shown in Fig. 8 during
January-April 2020 timeline. From this figure we can observe
that the temporal density variation of the tweets (geo-points)
across different sub-continents roughly match the evolution of
Covid-19 over this time. For example, during the February
timeline, the spatial density of USA, East Asia and European
countries were more as compared to Indian sub-continent,
however, the cases in India started growing in March-April
period. The tweet densities in Australian continent is quite
sparse which also matches with the small number of cases
in those regions. A DBSCAN-based spatial clusters indicates
the regions being dense of covid tweets. The trend of Covid
is roughly observed by correlating the spatial and temporal
distribution of Covid tweets with the pandemic news report.

However, as the number of geo-tagged, Covid related tweets
are extremely low, we did not find a large number of papers
studying their detailed spatio-temporal analysis. Rather, we
analyze the studies that have geospatial analysis of Covid
related data obtained from different sources. In [165] the
authors have collected the coronavirus pneumonia data from
different official websites during January 30, 2020 to February
18, 2020. In [166] the authors have collected epidemic data till
January 30, 2020, and have recorded that confirmed and death
cases in Hubei province accounted for 59.91% and 95.77%
of the total cases in China respectively. During that time the
authors have recorded that the number of cases in some cities
was relatively low, although the risk factors appeared to be
increasing. In [167] the authors have analyzed the temporal
and spatial distribution of the pandemic; an important point
that they have noticed is that a large number of people
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(a) January, 2020 (Number of Geo-tagged Tweets: 1627) (b) February, 2020 (Number of Geo-tagged Tweets: 7611)

(c) March, 2020 (Number of Geo-tagged Tweets: 11744) (d) April, 2020 (Number of Geo-tagged Tweets: 43760)

Fig. 8. Spatial densities of Covid-19 related tweets for Feb to April, 2020. The spatial density here is measured by using the DBSCAN configured by the
following three settings: (1) The maximum distance between any two neighbouring points is set as 3, while the unit is the longitude and latitude degree
based on the Geographic Coordinate System, (2) the number of samples in a neighborhood for a point to be considered as a core point is set as 10, (3)
the nearest-neighbors algorithm is set as “kd tree”. The density is represented by the spatial clusters, and each cluster contains a set of DBSCAN-defined
neighbouring points bounded by a convex-hull boundary.

(a) Time 0 (b) Time 1 (c) Time 2 (d) Time 3 (e) Time 4

Fig. 9. Position of hot-spot (ηλ = 2) for helix-like movement dataset.

entered into Wenzhou from Hubei Province, which is the main
reason for the outbreak in this region. Authors in [168] have
studied the spatio-temporal propagation of the first Covid wave
in China and compared it to other global locations. They
have also studied the spatial propagation of the pandemic
from Hubei to other provinces in China in terms of distance,
population size, human mobility etc. In [169] the authors have
studied the COVID-19 and SARS outbreaks at the provincial
levels in mainland China and have concluded that they ex-
hibit distinct spatiotemporal clustering patterns; this may be
due to different social and demographic factors, containment
strategies or differences in transmission mechanisms. Similar
spatio-temporal variations and epidemiological maps of cases
in other countries like USA, Iran, Italy, Spain, India etc. are
reported in [138], [170]–[173].

As mentioned earlier, the number of Covid related tweets
with geo-tags are extremely sparse (∼0.036% as observed
from our experiments), so, we could not conduct any spatial
aggregation and clustering analysis on a daily or weekly
basis. We therefore simulate the incremental spatial clustering
using a synthetic database obtained from [174]. The database
is composed of several datasets that model the temporal

evolution of the information contents in a two dimensional
space. The datasets were generated by Gaussian distributions
whose mean and/or variance changes over time. We use the
“3C2D2400Spiral” dataset, which presents a helix-like move-
ment of 3 clusters. These three clusters could be considered
as three groups of population with dynamic ratios of the
situation ε over the time series. We visually illustrate the
effect of our incremental clustering on the helix movement
dataset using Fig. 9 to illustrate the position, movement, and
coverage of the hot-spots when ηλ = 2. From this figure
we can observe that the movement of the hotspot is rather
continuous, which is because of the use of TDIE concept.
This continuous movement basically replicates the evolving
nature of the disaster.

In the above we have demonstrated a preliminary study of
spatial clustering of the relevant data, which imitates disaster
related tweets. Through this small experiment, we tried to
demonstrate the nature of temporal stickiness of such tweets;
i.e. if somebody from disaster location tweets that he/she needs
food, water, medical help, etc., chances are that the same thing
applies to most others in that location. Also such needs may
continue to evolve over time and space, and therefore modeling
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such an evolution is crucial for situational awareness. In fact
such stickiness phenomenon is quite a general phenomenon,
and so our analysis is quite generic and is applicable to most
disaster applications.

VII. Future Research Directions

In this section we discuss some possible future directions
for social media driven big data analysis.

Choice of appropriate mining algorithm: In this paper,
we have summarized the literature on four types of data
mining algorithms in section III. However, the success of
these methods depends on the volume and quality of data, and
how robust the learning model is. Also, supervised learning
approaches including deep learning, require large amounts
of labeled data, which is not easily available in disaster
scenarios. Thus the following issues need to be considered
while selecting a learning algorithm in disaster scenarios:
(1) different disaster applications require different types of
data mining algorithms as summarized in Table I and II; (2)
the data mining algorithm needs to deal with the evolving
situation, which has been studied in spatial clustering, but still
need further investigation for spatial prediction, spatial outlier
detection, and spatial co-location pattern detection; and (3) the
human needs expressed by the people trapped by the disaster
tend to be sticky, both spatially and temporally, and thus
quantifying the impact of this stickiness is another challenging
issue.

Edge computing for spatial analytics: Social media-driven
big data analytics plays a key role in situational awareness;
therefore, a timely analysis is necessary for quick response.
Edge computing is an option to enable such analytics services
within the Radio Access Network and in close proximity of the
affected people. This is particularly important during disasters
since the longer-distance communication to reach the cloud
may be difficult due to extreme network congestion that is
often experienced during disasters.

However, edge computing still has several challenges in
disaster scenarios. First, in a disaster scenario, communication
and computational resources can be very limited. Designing
efficient edge computing requires joint allocation of those
resources between edge devices and servers by considering
specific limitations in disaster scenarios. Second, some appli-
cations in disaster scenarios need to execute tasks of multiple
priority levels, corresponding to different emergency levels,
different computation workloads and computation results of
distinct performances. For example in object detection, consid-
ering more detection regions (i.e., region proposals) involves
higher computational complexity but can achieve higher de-
tection accuracy. Therefore, optimal allocation of resources
in an edge computing scenarios, with different optimization
variables and specific objectives, while considering the re-
quirements in disaster scenarios (e.g., energy consumption,
completion time, system utility) requires significant future
research.

Situation awareness and Sentiment Analysis: Situational
awareness tries to collect the social media data to grasp the
important events and circumstances in the physical world

through sensing, communication, and reasoning. We have
discussed four types of spatial analysis methods in the paper.
However, they need support from content analysis such as
sentiment analysis, which grasps the feeling of people, e.g.,
fear after an earthquake or anxiety when there is not enough
daily supplies. Integration of spatial and sentiment analysis is
very important, but still has some crucial challenges. Some
sentiments are quite general and have a spatial dependency,
such as worrying about water shortage, whereas others may
be tied to very specific needs of the individuals and thus
do not have a spatial dependency such as shortage of a
specific medicine. Separating such generic requirements from
the individualistic ones (to enable its analysis) can be quite
complex and needs to be investigated further.

VIII. Conclusions

During disasters, the data relevant to situational assessment
is generated from many different sources including social
media used by the affected people (usually Twitter), direct
communications with others, possibly unaffected, users who
put the information on the social media, and observations by
the deployed monitoring infrastructure, etc. The data collected
from these sources contains a lot of irrelevant or weakly
relevant information, and it becomes necessary to use big
data techniques to extract intelligence from them. Spatial
information and context is crucial for this; therefore the
paper focuses on several such opportunities and challenges
in extracting situational awareness from disaster related social
media data. We hope that this article will spur further research
into solutions to many of these issues.
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