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Abstract—Large scale systems often have numerous configuration
parameters that must be set properly in order to achieve
maximum performance under given resources constraints (or
equivalently minimum resource requirements for acceptance
performance level). The key difficulty in properly setting the
parameters is the complex inter-dependencies between the consis-
tent setting of the parameters and the overall impact of a setting
on the resulting resource requirements or performance. In this
paper we discuss an approach that combines machine learning
and domain knowledge driven combinatorial optimization to
allow the recommendation or one or more configurations from
which the administrators can make the appropriate choice. We
illustrate the methodology using the example of the cloud storage
gateway (CSG), which forms an essential infrastructure service
in edge computing and other scenarios involving remote access
to large amounts of cloud storage. An extensive evaluation
using real world vendor provided workloads demonstrates the
effectiveness of the approach in providing fast solutions to the
optimal configuration problem.

Keywords–Edge Storage, Configuration Management, Principal
Component Analysis, Machine Learning, Genetic Algorithms, Fea-
ture Extraction, Meta-heuristics,

I. INTRODUCTION

The behavior of all cyber-systems in a data center or an
enterprise system largely depends on their configuration which
describe the resource allocation to achieve the desired goal
under given constraints. The ill-effects of misconfiguration
(or poor resource allocation) has been widely articulated as
unavailability [15], financial burden [7], security breach [2],
etc. However, configuration settings cannot be classified as
simply “correct” or “incorrect”; instead, the overall behavior of
a device and that of the entire system depends on their setting
and interactions between them. In particular, the interactions
between various parameter settings and their nonlinear and
often non-monotonic impact on performance rules out simple
approaches, such as setting up a convex optimization problem
with explicit objective function and constraints, and solving
using traditional techniques such as hill climbing. Instead,
we exploit machine learning and meta-heuristics that exploits
the domain knowledge concerning the problem at hand to
determine good configuration settings that satisfy the given
objectives. It is also worth noting here that while traditional
optimization methods provide a single solution to the problem,
multiple solutions are often necessary in practice so that the
administrator can choose from them based on considerations
that are difficult to formalize.

While the methods explored in this paper are general
and can be applied to almost any configuration problem,
the domain knowledge is necessarily problem specific and
is often crucial in obtaining sensible solutions. Therefore,

we ground the analysis in this paper by considering the
problem of configuring a local storage system backed up by
a large remote storage system. The prime example of this is
a Cloud Storage Gateway (CSG) [19] that couples an amount
of locally available storage in a data center with a large but
remote Cloud storage to create the impression of essentially
unlimited storage. Doing so requires a proper setting of many
configuration parameters of the local system as discussed later.
Similar situations arise in many other storage contexts such
as Network Attached Storage (NAS), Containers (VM image,
Dockers), Cloudlets [22], etc. In particular, an Edge storage has
to contend with many constraints (e.g., space, power, cooling,
etc.) in addition to the strict QoS requirements, and thus forms
an ideal context for studying the configuration of Cloud backed
local storage.

We used a commercial CSG product for conducting our
experiments and collecting the data for our configuration
study. The details of the experimental data collection and
its analysis is presented in our earlier work [23]. This work
showed that while it is possible to build an accurate sta-
tistical machine learning model (SML) for the problem of
predicting performance for a given configuration (hereafter
referred as the ”forward problem”), it is very difficult to
achieve acceptable accuracy from such a model for predicting
configuration for a given performance/cost level (hereafter
referred as the ”backward problem”). Furthermore, any such
model will realistically apply to the configuration of only a
small set of parameters. Thus the approach that we explore
in this paper is to use the forward model as an oracle that
is intended to be used sparingly along with meta-heuristics to
determine multiple ”good” configurations. Our observational
study from the experiments gave us insight to apply relevant
domain knowledge to solve the “backward problem.” The
meta-heuristics is guided by the domain knowledge so that it
does not make entirely random choices and thus can converge
substantially faster and yield better results than an unguided
meta-heuristics.

In our performance prediction work [23], we showed
that predicting the performance of a complex cyber-system
is a challenging task because of complex interaction of a
large number of parameters. However, it is possible to use
machine learning techniques along with the domain knowledge
to learn these relationships well enough to generate accurate
performance predictions for given configuration settings. Un-
fortunately, the backward problem of recommending suitable
configuration for given performance or cost targets remains
unsolved, since the typical machine learning techniques are
unable to achieve good accuracy and in any case a direct
machine learning model would be specific to a particular
combination of configuration parameters. This paper presents



an efficient methodology to address the configuration question
using an Edge storage system as an example. To the best of our
knowledge, prior-art has addressed issues relating to resource
provisioning and resource management, while we address the
configuration problem as finding or recommending the required
compute plus storage resource to satisfy a given condition
(workload, performance, size, energy, etc.). We exploit the
domain knowledge into meta-heuristics algorithm to reduce
the (configuration) search space and converge at the required
solution. In designing an approach to find a suitable config-
uration for a cyber-system, we use problem specific domain
knowledge to enhance combinatorial optimization in order to
converge at a solution (i.e. configuration state).

Our solution to recommend an optimal configuration (i.e.
compute and storage resource allocation) uses Genetic Al-
gorithm (GA) enhanced with principal component analysis
(PCA) and feature importance (FI) metrics. The results from
our modified Genetic Algorithm (mGA) algorithm show that
they reach the maximum fitness (i.e. required configuration)
about 22% faster than the generic versions of the algorithm,
henceforth denoted as gGA.

The remainder of this paper is organized as follows. We de-
scribe the characteristics of the Edge Storage and configuration
questions in section II. We present our solution approach with
an enhanced GA - mGA in section III. Section IV gives a brief
overview of the experiments and data collection. Section V
discusses the evaluation methodology, implementation, and
compares our solution results with the baseline algorithm.
State of art and comparative study is given in section VI. We
conclude the paper in section VII.

II. CONFIGURATION MANAGEMENT OF EDGE STORAGE

Given the importance of exploiting the domain knowledge
in addressing the configuration management problem, it is
important to understand some architectural details of the
cloud storage gateway (CSG) that we experimented with and
analyzed extensively for this work in the context of Edge
computing (henceforth, referred as Edge Storage).

A. Overview of Edge Storage Infrastructure

Edge Storage Infrastructure (ESI) is shown in Fig. 1. It
provides a local storage buffer to bridge the gap between
the high throughput demands of the latency sensitive edge
applications and the low/unpredictable network connectivity
to the Cloud. ESI connects the edge-applications to an Object-
store on the Cloud because of the inherent advantages for
Object-store in the Cloud model. Edge client applications
operate using small blocks of data (of 4KB or 16KB size)
at SCSI speeds, shown as (A) in Fig. 1. On the Cloud
side, marked as (D), ESI has to interface with Cloud Object-
store over an unpredictable network (C) (low throughput, high
latency) with varied object sizes that are largely dependent
on the applications. In addition, ESI should address reliable
communication such as IO block acknowledgements or retry
an error-ed IO block on the SCSI side and acknowledge or
re-fetching the entire object on the Cloud side. To address
this imbalance, ESI has to satisfy key requirements such as
(i) protocol translation from/to SCSI to/from http/REST based
services, (ii) map 4KB/16KB block IO requests to Object-
store APIs for objects of varied size (or vis-versa), (iii) satisfy

high throughput/low latency edge-client request over a low
throughput/high latency connection to the Object-store Cloud
service, (iv) manage storage overheads like security, meta-data
management, reliability, rotating log file, garbage collection,
etc.

Data Flow in an ESI: For a read operation, depending
on the state of local data cache, ESI can either service the
data locally or fetch the data from the Cloud Storage. ESI
can achieve high read performance by pre-fetching data and
associated metadata, but at the cost of occupying data-cache
space. A write request from the edge application has to be
persisted successfully to the Cloud Storage, first by persisting
it locally on the data cache, and then transferring it successfully
over to the Cloud. Both such read and write operations to the
Cloud are limited by the amount of cache space (data cache
plus meta-data area), the unpredictable network bandwidth,
and overhead operations such as garbage collection, cache-
eviction, meta-data operations, etc. However, the edge clients
are transparent to these internal-details and view the ESI as a
virtual extension of the Cloud. This virtualization is shown as
the “logical data path” in Fig. 1.

Figure 1: Workflow/ Data Path in Edge Storage Infrastructure.

Importance of Meta-Data: Although the Cloud storage
could be block based, it is almost universally object based due
to many advantages of Object Storage in the Cloud model [9].
In an Object-store system, every object is associated with
the corresponding metadata that is maintained by a metadata
server. When an object is initially requested by ESI, this meta-
data also must be brought in from the Cloud. It is generally
desirable to keep the metadata longer than the data so that if the
object is evicted and then re-requested, the ESI can avoid small
IOs associated with metadata accesses. However, a proper
balance must be maintained between the space allocated to
the data and metadata for optimal performance. Thus, both the
workload access pattern and metadata management determine
the performance experienced by the user. As part of our study
in ESI configuration recommendation and resource allocation,
we will explore the space allocated for data cache and metadata
cache.

B. Configuration Modeling for ESI

ESI performance is defined as the throughput experienced
by the edge-clients, and is generally expressed as either MB/s
or as objects/sec [17]. ESI architecture involves the complex-
ities inherent in storage systems, cache allocation, satisfying
IO demands, and unpredictable network bandwidth [25].

ESI consumes computational resources for protocol trans-
lation, client authentication and capability based storage access
management, meta-data operations, workload interfaces (block
IO, Object-store APIs), etc. Thus, platform parameters such
as core speed, number of cores, memory size, and memory



TABLE I: Sample Classification of Design Variables.

Attribute No. of
Classes

Example of Buckets or
Enumeration

Core Speed (GHz) 5 1.2, 1.8, 2.4 ···
Memory Capacity (GB) 5 16, 32, 64 ···
Data cache size (GB) 7 25, 50, 100, 200, 500,

1000, >1000
Metadata size (GB) 5 25, 50, 100, 200 & 500
Observed Performance 10 Uniform distribution

(100Kbps,350Mbps)
bandwidth all become crucial. Satisfying latency sensitive
edge-client IO request needs data buffering, intelligent cache
operations, etc. that demand cache resources (both storage and
memory). The limited storage resource in an ESI has to be
efficiently partitioned for data-cache, meta-data, and other op-
erational overheads (e.g. swap space, log files). Unpredictable
network connectivity to the back-end Cloud raises additional
challenges in cache eviction, refresh vs. prefetch, efficient
bundling of object requests, exploiting workload patterns, etc.
The inter-dependencies and complex behavior of these param-
eters (e.g. CPU, memory, cache-space, etc.) make accurate and
tractable analytic modeling of performance very difficult.

The throughput (p) experienced by the edge-clients de-
pends largely on the workload (k), ESI hardware (h) and
the resources (r) allocated to the compute and storage layers
of ESI. An improper choice of these parameters will result
in a poor experience by the end user such as IO timeouts
(rejected requests) or poor throughput (low performance) or
large unacceptable latency. To address the difficulty in the
detailed analytic characterization of the above parameters, we
formulate the above parameters as a classification problem.
Although, in theory, most parameters can take a large range
of values, practical limitations, and sensitivity considerations
usually confine the feasible values to a small set of discrete
values. Table I provides an illustrative example in this regard.

Let nc denote the number of cores, cs the core speed,
mc the memory size, bw the memory bandwidth, and di the
disk IO rate. Also denote ar as the request arrival rate, rs the
request size, and ms the metadata size. We then propose the
following functions to represent the classification of hardware
h and workload k:

h=f1(nc,cs,mc,bw,di) (1)
k=f2(ar,rs,ms) (2)

Note that in postulating these functions, we have included
only a subset of the parameters that could potentially be
relevant. This again is based on domain knowledge, since
simply throwing in arbitrary platform parameters may actually
dilute the model and lead to worse results, as presented in
section V-A.

In addition to the hardware and workload characteristics,
the performance achieved by a workload class also depends
on the storage resources allocated to it. In particular, the total
space r allocated to a workload class is simply the summation
of data-cache size db, meta-data size md, and log size ls.
(Obviously, r should be less than the total space available).
Since the log size ls does not play a significant role in
performance, we will ignore it here.

We can now express throughput p in terms of workload
class w, ESI hardware class h and resource allocation class r
as: p=f3(h,k,r) (3)

Research Questions: The forward and backward problems
introduced earlier could now be concretely defined as follows:

RQ.1 Predict the performance p under given workload k, hard-
ware h and resource allocation r.

RQ.2 Recommend an optimal configuration Ψ, i.e. hardware h
and resource allocation r to satisfy the given workload k
& performance p and user defined constraints.

C. Problem Formulation

The complex relationship between various user settable pa-
rameters (compute capacity, storage resource, etc.) and vendor
provided latent parameters (cache eviction rate, data replace-
ment logic, meta-data operations, etc.) makes analytic models
intractable. Therefore, we used machine learning techniques
to learn the various relationships that influence the outcome
(performance). We provide detailed analysis for RQ.1 and the
proposed solution in our earlier paper [23]. For completeness,
we present the salient aspects of the performance prediction
model in section V-A, and use such an oracle to solve the
configuration question in RQ.1.

Predicting satisfying configuration parameters for RQ.2,
based on user workload and target performance is difficult
since it involves determining a large set of complex inter-
dependent variables that satisfy the given condition. Besides,
there could be more than one solution that satisfies the required
constraints. That is, there could be various combinations of
hardware (CPU, memory, etc) and resource (data-cache size,
meta-data size) that satisfy the user given workload/ perfor-
mance under given constraints (e.g. minimum heat dissipation,
size).

Our solution (i.e selected configurations state Ψ) should
satisfy the user given condition (i.e. performance puser) at a
minimum cost possible. We define a constraint function as:

p≥puser (4)
where p is the expected performance from configuration Ψ.
The objective to find such a configuration Ψ at a minimum
cost. min(cost(Ψ)) (5)
The objective can be expressed as the deployment cost, power
consumption, cooling requirements, etc. The cost function is
represented as the normalized cost of a configuration Ψ based
on the design variables. For example, kth configuration Ψk for
some choice of hardware hi and resource rj , is represented as
Ψk={csi,nci,bwi,···dbj ,mdj ,..} and has a cost cost(Ψk). Data
for cost function can be derived from vendor specification for
hardware server and allocated resources (disk capacity). We
approach the above question RQ.1 and RQ.2 in two phases:
(i) a statistical machine learning (p-SML) model to predict
the behavior (e.g. performance) of the system, and (ii) a
combinatorial optimization guided by the domain knowledge
to recommend a suitable configuration that satisfies given goals
and constraints for user given workload/performance.

III. DETERMINING OPTIMAL CONFIGURATION

There are numerous algorithms for combinatorial optimiza-
tion [1] designed to sample the state space in some way and
improve the solution. Because of the inherent randomness in
the way the states are explored, no algorithm yields universally
better result than the others; instead, the quality of results on



making use of the characteristics of the problem to improve the
search. In this paper, we choose the popular genetic algorithm
(GA) ([11, 21]). Algorithm 1 presents pseudocode of GA [21]
and is based on evolutionary biology to optimizing a user given
fitness function of a chromosome (solution) as the solutions
evolve over time (lines 1-4). The fitness corresponds to how
well a solution performs; i.e. inputs with the highest fitness are
desired. The fittest chromosomes generate the next generation
of children by random mutation and cross-over. Each element,
or gene, of every chromosome is mutated with a probability
defined by the mutation rate (line 5). The design variables in
Eq.1 and Eq.2 form the genes in the chromosome in GA. The
efficiency of the algorithm can be perceived in multiple ways,
for example as the quality of the output chromosomes (defined
by the fitness function) or how fast the optimal solution is
obtained (defined by the number of iterations to reach the
solution).

Algorithm 1: Pseudocode of Generic GA [21]
1 initialize the population;
2 evaluate population;
3 while (!stopCondition) do
4 select the best-fit individuals for reproduction;
5 breed new individuals through crossover and

mutation operations �;
6 evaluate the individual fitness of new individuals;
7 replace least-fit population with new individuals;

Each population is represented by a chromosome that
maps to a design state, (i.e. a set of design variables). Our
solution uses the performance prediction model from RQ.1
as the fitness function to determine if the current state (i.e.
chromosome) satisfies the user required performance (Eq.4).
p-SML performance prediction oracle is consulted to predict
the performance of each chromosome (configuration state or
design variable).

To achieve higher efficiency, a good solution would result
in a smaller number of calls to such an oracle. Instead of
default random mutation in GA (at line 5), we propose to
do it intelligently. We use additional insights from principal
component analysis (PCA) derived from the p-SML model to
control the gene mutation probability (marked as � in line 5
in Algorithm 1). We explain the metrics from PCA, proba-
bility factors, selection of principle design variables based on
features importance in evaluation section V-C.

TABLE II: Grouping Design Vari-
ables

Group Design Attribute
Pairs

Group G1 Number of Cores,
Memory capacity

Group G2 Core speed,
Memory bandwidth

Independen-
tly varied

Data cache,
Disk IO rate

In addition to PCA,
we incorporate domain
knowledge in the algo-
rithm by dividing the
design variables into
groups based on their
level of interdependen-
cies. That is, the de-
sign variables within a
group show strong in-
terdependence and thus
should be set collectively, where the settings across groups can
be done independently.

For example, in the context of a computer system, it is well

understood that a faster CPU should be paired with a faster
DRAM, else the CPU will simply stall waiting for the memory.
Grouping of configuration variables based on insights avoids
exploration of states that are unlikely to be useful and thus is
expected to both speed up the convergence and lead to better
solutions within a given number of iterations.

With such enhancements, we show that our mGA solution
with an “informed“ approach can converge to the required
configuration at least 22% faster than GA.

IV. EXPERIMENTS AND EMPIRICAL DATA

We explain our evaluation methodology in three steps:
(i) collecting empirical data based on industry workload, (ii)
implementation details, and (iii) evaluation results.

A. Real World Workload

In absence of publicly available ESI data patterns or
workload streams or trace dumps, we used a set of vendor
provided workload patterns (shown in Table III), that are
reflective of real-world ESI user population. Meta-data shown
in the table refer to attributes that influence both the meta-
data operations and the performance. These are shown in
the meta-data column as ownership (O), sub-directory depth
(F=Flat,D=Deep), and object-permission (P). These workloads
are equivalent to studies from Yi [29], Varma [26], and
YCSB [3].

TABLE III: Sample Workload Type and Applications.

Request
Id

#users x objects x
object size

Meta-
Data

Sample Appl.
[26, 17, 29]

W1 25 x 10,000 x 4 KB O,D,F,P Health Monitors
W2 25 x 10,000 x 256

KB
O,D,F,P MRI/ CT Scans/

Traffic Images
W3 5 x 10,000 x 1 MB O,D,F,P DICOM Visible

Light
W4 5 x 1,000 x 10 MB O,D,F,P Mammography/

Street Video(1 min.)
W5 2 x 200 x 1 GB O,D,F,P Pathology

For example, workload patterns for a smart-health mon-
itoring system is characterized as “W1” defined by image
size of 4KB, about 10,000 images/24 hrs, with the associated
meta-data on date, ownership, location, etc. Another workload
pattern for health-care (e.g. Pathology) is characterized as
“W5” with image size 1GB, about 200 images/24hrs, with
meta-data about patient ID, hospital ID, etc.

We executed 100s of workloads on various configurations
and resource allocation schemes using different hardware
servers. We used two hardware servers of the following
configurations: (i) Server A comprising of 4 core x 1.8 GHz
CPU, 16GB memory, 3 HDDs of 500 GB each & 1GB NIC
cards and (ii) Server B with 8 core x 2.1 GHz CPU, 32GB
memory, 1 HDDs of 1 TB each & 1GB NIC cards. For each of
these experiments, we collected performance p metrics along
with hardware (nc,cs,mc···) and resource allocation (dc,md···)
details. The design variables (a.k.a problem attributes) were
classified into buckets, a sample of which is shown in Table I.
Observed metrics, such as performance was classified into
buckets, i.e. performance of 467175 Bps and 21293642 Bps



was classified as throughput class 1 or throughput class 4
respectively.

In order to examine the influence of configuration parame-
ters (compute power, memory resource, cache disk space, etc.)
on the final outcome (performance), we executed our tests
on different hardware servers of varied configurations given
earlier. Disk space r on each of these machines was partitioned
for different data cache (dc) size from 25 GB to 1000 GB. Hard
disk (i.e. the data cache) in the servers was nfs mounted and
connected to Object-store on Cloud OSS. Each of the servers
had Ubuntu 14.04, required tools to run the experiments and
collect the metrics.

For each of the test execution, the scripts collected the
design variables used and metrics observed of Eq. 1,2, 3.
Along with performance observed p (throughput in bytes/sec)
for a given workload k and resource allocation r, we collected
the configuration details h (e.g. cores, core speed, memory,
disk capacity, etc) and resources r (i.e. data cache area,
metadata, log size). We decided to suspend data collection after
reaching a performance prediction accuracy of about 95%. We
implemented ESI cost function as a normalized value based
on the hardware manufacturer’s server specification data, such
as power rating, cooling BTU, size, etc. For example, cost Cij

= 0.475 is the cost for hardware server hi (e.g. 2 x 1.8GHz,
32GB mem, 100K IOPS, etc.) and resource rj (e.g. 500GB
data cache, 100GB meta-data).

B. Implementation Details

We implemented the algorithms in Python using scikit-
learn [18] library for Machine Learning components such
as Principal Component Analysis, Classifiers, ML metrics
(e.g. accuracy, precision, etc.), Feature Importance etc. For
combinatorial optimization, we used NSGA-II [6] Genetic
Algorithm from Platypus library [5]. NSGA-II algorithm gives
the flexibility to define fitness function, define objectives
and constraints, variable bounds, chromosome construction,
crossover and mutation, solution-set, etc.

C. Hyper-parameters of GA

For combinatorial optimization algorithms like GA, it
is difficult to determine hyper-parameters a priori [11]. We
choose the hyper-parameters after several executions and
choose the values that gave the best results. For GA & mGA,
we set the initial population of 170 with the tournament
selector to choose the top 8 “fit candidates” for next generation
mutation. To enable meaningful comparison of different algo-
rithms, we choose to count the number of calls to performance-
prediction-oracle, and as explained earlier, a good solution
would result in a smaller number of calls to such an oracle.
The count of calls to the oracle is shown as iterations (y-axis)
in the results.

V. EVALUATION RESULTS

In this section, we discuss experimental results for both the
forward and backward prediction problems discussed earlier.
For the latter, we present the two independent results based on
the domain knowledge enhanced meta-heuristics processes.

A. Influence of Chosen Feature Sets on Performance

As stated earlier, including the configuration parameters
(or feature set) without proper consideration of their relevance
not only makes the model more complex but also interferes
with the accuracy of the model. We demonstrate this in the
following by studying the performance p as a function of
configuration parameters (k,h,r). Fig. 2 shows the prediction
accuracy results for a various choice of attributes. In Fig. 2,
Feature Set 3 includes high level attributes {k,h,r} (Eq.3) and
Feature Set 4 includes additional attributes by expanding the
resource {k,h,ds,md}. Performance prediction accuracy using
these two limited feature-set is about 93%. Feature Set 10
comprise of {cs,nc,mc,bw,di,ar,rs,ms,ds,md}, this results in
a higher prediction accuracy of 97%. We verified the results
by expanding the feature set with additional attributes.

A blind inclusion of more attributes is labeled as Feature
Set 13, which includes additional attributes of network band-
width (nw) and logfile size (ls). These additional attributes
add undesired noise in the data and results in poorer prediction
accuracy (down to 91%). Based on our extensive experience
and domain knowledge with Edge Storage, we know that this
noise is the result of adding unpredictable network bandwidth
(nw) and logfile size (ls), both of which do not contribute
to the ESI performance. These results reinforce our earlier
comments regarding the selection parameters in Eq. 1 and
Eq. 2.

Figure 2: Performance prediction accuracy and feature set.

There is no auto-solution for improving the efficiency
of ML algorithms, as they depend on the application
domain, careful selection of attributes (feature set), and
hyper-parameters like regularization parameters, learning rate,
etc. [24]. Therefore, we tried several types of models and
ultimately settled on Decision Tree (DT) for RQ.1, as it consis-
tently performed the best (see Fig.3). Building a performance
prediction model for RQ.1 based on Decision Trees yielded an
accuracy around 97% for various test-train data combinations
(k-fold validation, k=5). An extensive analysis of the model
ensured that it does not suffer from under-fit or over-fit.

Figure 3: Performance prediction accuracy and ML predictors.



B. Extracting Feature Importance

Principal Component Analysis (PCA) is a dimensionality
reduction technique that projects the data from its original
p-dimensional space to a smaller k-dimensional subspace.
PCA maximizes the variance accounted by the first k com-
ponents and thereby attempts to include those components
that have the most influence on the output. The k-dimensional
subspace considered by PCA involves components that are
linear combinations of the original variables; therefore, we still
need to identify the most relevant original variables. In PCA
terminology, the contribution of each variable to each principal
component is described by Loadings [14], which can be easily
extracted. Large loadings (positive or negative) indicate that a
particular variable has a strong relationship with a particular
principal component. The sign of a loading indicates whether a
variable and a principal component are positively or negatively
correlated.

Figure 4: PCA and Feature Importance.
Feature ablation is a technique for calculating feature

importance (FI) that works for all machine learning models.
A feature with a high importance has a greater impact on the
target variable. We compared both FI from the DT model and
PCA & Loadings from the PCA objects to gain confidence
in ranking the predominant attributes that contribute to ESI
performance. The scree plot of PCA and FI for our data-set
is given in Fig. 4. In the figure, the left sub-graph shows
PCA values for different orthogonal components (C1···C6)
on x-axis, and the right sub-graph shows FI values for the
design variables (on x-axis). Based on the above metrics,
PCA & FI provided a reasonable metric to understand the
variance of a parameter and its relative contribution towards
the performance. Instead of randomly mutating the set of genes
to generate a new population set (i.e. new configuration state),
we focused on a deterministic way to control the cross-over
and the mutation process. We used the above metric from PCA
and FI to probabilistically mutate the genes in the modified
(PCA+GA) mGA approach and generate a ’controlled’ new
state. The results of our mGA solution is given below.

Next, we discuss the solution for the backward problem
(BP), relate to finding the near-optimal configuration Ψ that
satisfies a given workload/performance criteria (Eq. 4) at
minimal possible cost (Eq. 5). We compare the functions
against the baseline and validate how quickly an algorithm
converges at such a required configuration state.

C. Recommending a Configuration using mGA

The design variables (CPU, memory, IO bandwidth, etc.)
plus the workload properties (file size, meta-data, no. of files,
etc.) forms the chromosome in the gene pool that represents
a population. Note that during mutation, we do not vary the
workload variables (ar,rs,rm) as these are user given properties
for predicting the required configuration. The fitness function
(FF) defined by the Decision Tree from section V-A selects a
sub-set of the population (design variables) that satisfy the user
defined performance. To ensure efficiency, this performance
predicting oracle has to be consulted sparingly for rapid
convergence.

In GA, the design variables (i.e. gene pool) are randomly
mutated to get to a new state (i.e. new population set). The
population set is continuously evaluated for fitness and the
best fit population is selected as a suitable solution (i.e.
population with predicted performance equal to user defined
performance). An uncontrolled mutation may result in the
design variables being randomly selected from a wide range
and this may result in finding a suitable solution after a consid-
erable time (measured as the number of calls to the oracle). Our
goal is to enhance the GA algorithm to intelligently mutate the
gene pool such that the desired solution (i.e. fitness function)
is reached faster (i.e. less number of iterations).

We extracted additional data from ML objects, PCA model,
and feature importance (FI) as explained in section V-B. A high
FI metric relates to a high relevance of the variable towards
the output. For example, Fig 4 shows that data-cache value of
0.506 has the highest relevance to the final ESI performance.
We used this data relevance to probabilistically mutate dif-
ferent genes. Using data from Fig. 4, gene representing data-
cache undergo mutation with 0.506 probability, and the gene
representing core speed undergo mutation with 0.108 proba-
bility and so on. This disciplined mutation allows the mGA
process to move to a new state (i.e new population set) in a
controlled fashion. Design variables with lesser influence tend
to settle down quickly and the influencing variable (data cache,
memory bandwidth) span ’within a limited’ range searching
for a satisfying solution (i.e. user desired performance). This
intelligent control of gene-mutation results in reaching the
solution-set faster (i.e less number of iterations).

Genetic algorithms results in a ’multiple solution-sets’ that
satisfy the fitness function, which can be further refined or
filtered for desired results. In our approach, the solution set
should satisfy the user given constraints (Eq.4), normally at a
minimum cost (Eq.5). In our implementation, we keep track
of the number of iterations required to “find” a satisfying
configuration such a minimal cost. The algorithm “records”
the number of calls to the oracle needed to obtain the most
satisfying configuration state (chromosome in solution set) at
a “minimum” possible cost and time. Fig. 5(a) shows the
normalized values of such convergence (iterations) for both
mGA and gGA algorithms for various test cases (T1···T10)
along with the cost function for the solution (Ψ). This figure
shows a sub-set of 10 test cases (x-axis) from large number of
test cases we executed. As seen in Fig. 5(a), with a controlled
gene mutation in mGA algorithm, the design variables find
the satisfying fitness function (performance) faster at the same
minimum cost in less number of iterations. The cost of the
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Figure 5: GA and mGA (PCA+Grouping) Test Results (Iterations and Cost)

configuration from mGA algorithm matches the minimal cost
obtained in the gGA algorithm (line graph in Fig. 5(a)).

Fig. 5(a) shows the test cases executed on the x-axis and the
normalized number of iterations and costs on the y-axis. (The
normalization is w.r.t. 500, which is the maximum number of
iterations.) The lines for the costs refer to the minimal cost of
solution (Eq.5) obtained by both mGA and GA. For example,
test case T1 is a query to suggest an optimal configuration for:
Workload class:8, Perf class:5 (i.e. Large Workload: 1000 files
of 10 MB size, 5 users, Required Perf.: 250MBps). The mGA
based approach converges to a solution after 225 iterations with
a solution: 2 cores x 3.2GHz, 16 GB Mem, 3.2GB Mem bus,
DiskIO = 10K IOPS, Normalized Cost = 0.4875. The same
query to a GA takes about 333 iterations to find a minimum
cost solution.

Fig. 5(b) shows a more comprehensive comparison between
gGA and mGA. The metric on y-axis is [#iterations(GA) -
#iterations(mGA)]/500, and the x-axis is simply the 400 cases
that were run with different parameters. Note that the dots
above the x-axis (positive values) show that mGA performs
better than gGA, whereas negative values show the opposite. It
is clear that mGA outpaces gGA in almost 90% of the cases.
Furthermore, in the cases where mGA performs better than
GA, it takes 22% fewer iterations than gGA on the average.

VI. STATE OF CURRENT ART

In a recent survey, Zhang [30] categories various tech-
niques in resource management in Cloud and Edge computing
as latency optimization, shorter task completion time, con-
tainer placement, data replication, and Edge caching strategies.
Wang [28] presents a survey on the impact of Edge caching
capacity, delay, and energy efficiency on system performance
in a mobile Edge server. Meta-heuristics based work has been
proposed to solve Cloud resource provisioning problems by
allocating applications among the virtual machines to satisfy
user QoS [13]. In CHOPPER [8], authors present a resource
scheduling and provisioning scheme based on QoS metrics
(execution time, execution cost, energy consumption, and wait-
ing time). Task offloading, workload scheduling, application
placement, and migration schemes used in Cloud/ Edge Com-
puting largely pertain to network and computational resource
allocation. This flexibility is not available for ESIs as they have
to fulfill the workload request “locally and immediately”. Our
work focuses on choosing a set of configuration parameters

that satisfy user workload/performance demands under given
conditions.

Klimovic and Costa [4] [12] confirm our observations
regarding the difficulty of proper configuration in Cloud
storage systems. In designing Selecta, Klimovic address the
storage configuration for data analytics workload using TPC
traces on block storage devices inside data centers, while our
work studies the Object-store based ESI configuration on the
Edge side using vendor provided workloads. Costa [4] state
that configuring a storage system for desired deduplication
performance is extremely complex and difficult to characterize.
Rao [20] show that a traditional control theoretic framework is
inadequate to capture the complexities of resource allocation
for VMs. Ofer [16] study comes close to our work, but
their study applies deep learning to cache eviction/refresh
techniques in Object-store, rather than setting configuration
parameters.

For the prediction of performance vs. workload parameters
of a storage system, Wang [27] used a Classification Regres-
sion Trees (CART)-based model and showed a relative error
between 17% and 38% for response time prediction. Hsu de-
signed Inside-Out [10] to predict performance in a distributed
storage system by studying low-level system metrics (e.g.,
CPU usage, RAM usage and network I/O) as a proxy for
measuring high-level performance. Compared to Inside-Out
performance prediction accuracy of 91%, our pSML model
achieves an accuracy above 95%.

VII. CONCLUSIONS

In this paper, we presented an approach to deciding optimal
configuration by constructing a machine learning model for
the performance and/or cost and then using as an implicit
function to be optimized using combinatorial optimization
based on genetic algorithm (GA). Furthermore, we enhance
the GA by exploiting the domain knowledge in terms of
the relative importance of various configuration parameters
and their interrelationships. We explore a real-world storage
gateway configuration using this methodology and show that
it yields the results of same or better quality as the standard
GA but in about 22% fewer iterations. In the future we
plan to explore how the domain knowledge concerning the
configuration parameter setting in different types of systems
can be used with GA and other combinatorial optimization
methods.
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